用于深水钻井前沿的低冲击钻井液

Erna Kakadjian, April Shi, J. Porter, Prahlad Yadav, D. Clapper, W. Pessanha
{"title":"用于深水钻井前沿的低冲击钻井液","authors":"Erna Kakadjian, April Shi, J. Porter, Prahlad Yadav, D. Clapper, W. Pessanha","doi":"10.4043/29802-ms","DOIUrl":null,"url":null,"abstract":"\n One of the biggest challenges when drilling in deep water is the excessive dependence of drilling fluid rheological properties on temperature. Conventional drilling fluids often have high viscosity at the seabed temperature, which increases the Equivalent Circulating Density (ECD) and surge pressures when running pipe or initiating circulation, elevating the risk of fracturing the wellbore. This paper describes the development of a drilling fluid for deep-water applications, with minimum viscosity variation with temperature.\n Multiple laboratory formulations were evaluated during the development of the new, non-aqueous based drilling fluid that meets deep-water's challenging rheological and barite suspension requirements. CaCl2 brine was used as the internal emulsion phase, and synthetic isomerized olefin as the base oil. The testing followed the API Recommended Practice for Field Testing Oil-based Drilling Fluids. Samples were aged at dynamic conditions for 16 hours at several temperatures. Then, rheological properties and high-pressure high-temperature (HPHT) fluid loss, emulsion stability, and dynamic sagging were tested. Static sag experiments were also carried out for up to seven days together with improved step down rheology tests.\n A low-impact, non-aqueous drilling fluid (LIDF) was designed to minimize ECD increases by reducing the effect of cold temperature on the fluid viscosity. The fluid offers a superior low viscosity profile and rapid-set, easy-break gel strengths, while maintaining low shear rate viscosity at high temperatures with optimal weight material suspension. The fluid is also compatible with all contaminants usually found during the drilling operation and meets all the regulatory requirements for the Gulf of Mexico and other deep-water operational areas. Field application demonstrated that LIDF reduced the effect of temperature on the fluid rheological properties and minimized the risk of induced formation losses. These same rheological features reduced non-productive time associated with cement displacement and barite sagging.\n Supporting laboratory and field data are presented to demonstrate the superior performance of the fluid in maintaining rheological and barite suspension properties over a wide range of temperatures. The properties of the LIDF are achieved by matching the effects of emulsifier, organophilic clay, and rheological modifiers to maintain correct rheological properties at low and high temperatures.","PeriodicalId":11089,"journal":{"name":"Day 2 Wed, October 30, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Low Impact Drilling Fluid for Deepwater Drilling Frontier\",\"authors\":\"Erna Kakadjian, April Shi, J. Porter, Prahlad Yadav, D. Clapper, W. Pessanha\",\"doi\":\"10.4043/29802-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n One of the biggest challenges when drilling in deep water is the excessive dependence of drilling fluid rheological properties on temperature. Conventional drilling fluids often have high viscosity at the seabed temperature, which increases the Equivalent Circulating Density (ECD) and surge pressures when running pipe or initiating circulation, elevating the risk of fracturing the wellbore. This paper describes the development of a drilling fluid for deep-water applications, with minimum viscosity variation with temperature.\\n Multiple laboratory formulations were evaluated during the development of the new, non-aqueous based drilling fluid that meets deep-water's challenging rheological and barite suspension requirements. CaCl2 brine was used as the internal emulsion phase, and synthetic isomerized olefin as the base oil. The testing followed the API Recommended Practice for Field Testing Oil-based Drilling Fluids. Samples were aged at dynamic conditions for 16 hours at several temperatures. Then, rheological properties and high-pressure high-temperature (HPHT) fluid loss, emulsion stability, and dynamic sagging were tested. Static sag experiments were also carried out for up to seven days together with improved step down rheology tests.\\n A low-impact, non-aqueous drilling fluid (LIDF) was designed to minimize ECD increases by reducing the effect of cold temperature on the fluid viscosity. The fluid offers a superior low viscosity profile and rapid-set, easy-break gel strengths, while maintaining low shear rate viscosity at high temperatures with optimal weight material suspension. The fluid is also compatible with all contaminants usually found during the drilling operation and meets all the regulatory requirements for the Gulf of Mexico and other deep-water operational areas. Field application demonstrated that LIDF reduced the effect of temperature on the fluid rheological properties and minimized the risk of induced formation losses. These same rheological features reduced non-productive time associated with cement displacement and barite sagging.\\n Supporting laboratory and field data are presented to demonstrate the superior performance of the fluid in maintaining rheological and barite suspension properties over a wide range of temperatures. The properties of the LIDF are achieved by matching the effects of emulsifier, organophilic clay, and rheological modifiers to maintain correct rheological properties at low and high temperatures.\",\"PeriodicalId\":11089,\"journal\":{\"name\":\"Day 2 Wed, October 30, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 30, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29802-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 30, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29802-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

深水钻井面临的最大挑战之一是钻井液流变特性对温度的过度依赖。常规钻井液在海底温度下通常具有高粘度,这增加了等效循环密度(ECD)和下入管柱或启动循环时的冲击压力,增加了井筒破裂的风险。本文介绍了一种粘度随温度变化最小的深水钻井液的研制。在开发新型非水基钻井液的过程中,对多种实验室配方进行了评估,以满足深水具有挑战性的流变性和重晶石悬浮要求。以氯化钙卤水为内乳液相,合成异构烯烃为基础油。测试遵循API推荐的油基钻井液现场测试规范。样品在不同温度下动态陈化16小时。然后,测试了流变性能、高压高温(HPHT)滤失、乳状液稳定性和动态下垂。静态沉降实验也进行了长达7天的时间,同时还进行了改进的降压流变试验。设计了一种低冲击、非水钻井液(LIDF),通过降低低温对流体粘度的影响,最大限度地减少ECD的增加。该流体具有优异的低粘度、快速凝固、易破裂的凝胶强度,同时在高温下保持低剪切速率粘度,并具有最佳重量的材料悬浮液。该流体还与钻井作业中通常发现的所有污染物兼容,并符合墨西哥湾和其他深水作业区域的所有监管要求。现场应用表明,LIDF降低了温度对流体流变性能的影响,最大限度地降低了引起地层损失的风险。这些相同的流变特性减少了与水泥置换和重晶石下垂相关的非生产时间。实验室和现场数据证明了该流体在很宽的温度范围内保持流变性和重晶石悬浮特性的优越性能。LIDF的性能是通过匹配乳化剂、亲有机粘土和流变改性剂的作用来实现的,以保持正确的低温和高温流变特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low Impact Drilling Fluid for Deepwater Drilling Frontier
One of the biggest challenges when drilling in deep water is the excessive dependence of drilling fluid rheological properties on temperature. Conventional drilling fluids often have high viscosity at the seabed temperature, which increases the Equivalent Circulating Density (ECD) and surge pressures when running pipe or initiating circulation, elevating the risk of fracturing the wellbore. This paper describes the development of a drilling fluid for deep-water applications, with minimum viscosity variation with temperature. Multiple laboratory formulations were evaluated during the development of the new, non-aqueous based drilling fluid that meets deep-water's challenging rheological and barite suspension requirements. CaCl2 brine was used as the internal emulsion phase, and synthetic isomerized olefin as the base oil. The testing followed the API Recommended Practice for Field Testing Oil-based Drilling Fluids. Samples were aged at dynamic conditions for 16 hours at several temperatures. Then, rheological properties and high-pressure high-temperature (HPHT) fluid loss, emulsion stability, and dynamic sagging were tested. Static sag experiments were also carried out for up to seven days together with improved step down rheology tests. A low-impact, non-aqueous drilling fluid (LIDF) was designed to minimize ECD increases by reducing the effect of cold temperature on the fluid viscosity. The fluid offers a superior low viscosity profile and rapid-set, easy-break gel strengths, while maintaining low shear rate viscosity at high temperatures with optimal weight material suspension. The fluid is also compatible with all contaminants usually found during the drilling operation and meets all the regulatory requirements for the Gulf of Mexico and other deep-water operational areas. Field application demonstrated that LIDF reduced the effect of temperature on the fluid rheological properties and minimized the risk of induced formation losses. These same rheological features reduced non-productive time associated with cement displacement and barite sagging. Supporting laboratory and field data are presented to demonstrate the superior performance of the fluid in maintaining rheological and barite suspension properties over a wide range of temperatures. The properties of the LIDF are achieved by matching the effects of emulsifier, organophilic clay, and rheological modifiers to maintain correct rheological properties at low and high temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信