{"title":"基于多尺度卷积的关注机制与战争搜索优化的乳腺癌图像分割","authors":"B. N. Madhukar, S. Bharathi, A. Polnaya","doi":"10.1080/1206212X.2023.2212945","DOIUrl":null,"url":null,"abstract":"Numerous studies have explored different techniques for segmenting breast cancer images, in particular deep learning-based Computer-Aided Diagnosis (CAD) has recently netted attention. However, due to their down-and-out pursuance, the existing approaches like FCN (Fully Convolutional Network), PSPNet (Pyramid Scene Parsing Network), U-Net, and SegNet still required improvement for offering better semantic segmentation while identifying breast cancer. In this paper, the newly proposed breast cancer tumor segmentation method consists of four steps pre-processing, augmentation, segmenting image using multi-scale convolution and multi- attention mechanisms respectively. The proposed method utilizes the ResNet (Residual Network) backbone network with multi-scale convolution for feature map prediction. Also, the effectiveness of the multi-channel attention module with a pyramid dilated nodule is employed for semantic segmentation. Gated axial, position, and channel attention are combined to create a multi-channel attention mechanism. Additionally, War Search Optimization (WSO) algorithm is being utilized to enhance the accuracy of the segmented images. Experimentations are conducted on two datasets, viz., Breast Cancer Cell Segmentation Database and Breast Cancer Semantic Segmentation (BCSS) Database, with different existing networks. The effectiveness of the network is evaluated based on various criteria in terms of precision, accuracy, recall, (mean Intersection of Union), (Intersection of Union), etc.","PeriodicalId":39673,"journal":{"name":"International Journal of Computers and Applications","volume":"40 1","pages":"353 - 366"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-scale convolution based breast cancer image segmentation with attention mechanism in conjunction with war search optimization\",\"authors\":\"B. N. Madhukar, S. Bharathi, A. Polnaya\",\"doi\":\"10.1080/1206212X.2023.2212945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous studies have explored different techniques for segmenting breast cancer images, in particular deep learning-based Computer-Aided Diagnosis (CAD) has recently netted attention. However, due to their down-and-out pursuance, the existing approaches like FCN (Fully Convolutional Network), PSPNet (Pyramid Scene Parsing Network), U-Net, and SegNet still required improvement for offering better semantic segmentation while identifying breast cancer. In this paper, the newly proposed breast cancer tumor segmentation method consists of four steps pre-processing, augmentation, segmenting image using multi-scale convolution and multi- attention mechanisms respectively. The proposed method utilizes the ResNet (Residual Network) backbone network with multi-scale convolution for feature map prediction. Also, the effectiveness of the multi-channel attention module with a pyramid dilated nodule is employed for semantic segmentation. Gated axial, position, and channel attention are combined to create a multi-channel attention mechanism. Additionally, War Search Optimization (WSO) algorithm is being utilized to enhance the accuracy of the segmented images. Experimentations are conducted on two datasets, viz., Breast Cancer Cell Segmentation Database and Breast Cancer Semantic Segmentation (BCSS) Database, with different existing networks. The effectiveness of the network is evaluated based on various criteria in terms of precision, accuracy, recall, (mean Intersection of Union), (Intersection of Union), etc.\",\"PeriodicalId\":39673,\"journal\":{\"name\":\"International Journal of Computers and Applications\",\"volume\":\"40 1\",\"pages\":\"353 - 366\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1206212X.2023.2212945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1206212X.2023.2212945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
摘要
许多研究探索了不同的乳腺癌图像分割技术,特别是基于深度学习的计算机辅助诊断(CAD)最近引起了人们的关注。然而,现有的FCN (Fully Convolutional Network)、PSPNet (Pyramid Scene Parsing Network)、U-Net和SegNet等方法由于其追求的不确定性,在识别乳腺癌的同时,还需要改进以提供更好的语义分割。本文提出的乳腺癌肿瘤分割方法包括预处理、增强、多尺度卷积分割和多关注分割四个步骤。该方法利用多尺度卷积的ResNet (Residual Network)骨干网进行特征映射预测。同时,利用多通道注意力模块金字塔型扩张结节的有效性进行语义分割。门控轴,位置和通道的注意相结合,以创建一个多通道的注意机制。此外,还利用战争搜索优化(WSO)算法来提高分割图像的准确性。在现有网络不同的情况下,在乳腺癌细胞分割数据库和乳腺癌语义分割数据库两个数据集上进行实验。网络的有效性是基于精度、准确度、召回率、(平均交集)、(交集)等各种标准来评估的。
Multi-scale convolution based breast cancer image segmentation with attention mechanism in conjunction with war search optimization
Numerous studies have explored different techniques for segmenting breast cancer images, in particular deep learning-based Computer-Aided Diagnosis (CAD) has recently netted attention. However, due to their down-and-out pursuance, the existing approaches like FCN (Fully Convolutional Network), PSPNet (Pyramid Scene Parsing Network), U-Net, and SegNet still required improvement for offering better semantic segmentation while identifying breast cancer. In this paper, the newly proposed breast cancer tumor segmentation method consists of four steps pre-processing, augmentation, segmenting image using multi-scale convolution and multi- attention mechanisms respectively. The proposed method utilizes the ResNet (Residual Network) backbone network with multi-scale convolution for feature map prediction. Also, the effectiveness of the multi-channel attention module with a pyramid dilated nodule is employed for semantic segmentation. Gated axial, position, and channel attention are combined to create a multi-channel attention mechanism. Additionally, War Search Optimization (WSO) algorithm is being utilized to enhance the accuracy of the segmented images. Experimentations are conducted on two datasets, viz., Breast Cancer Cell Segmentation Database and Breast Cancer Semantic Segmentation (BCSS) Database, with different existing networks. The effectiveness of the network is evaluated based on various criteria in terms of precision, accuracy, recall, (mean Intersection of Union), (Intersection of Union), etc.
期刊介绍:
The International Journal of Computers and Applications (IJCA) is a unique platform for publishing novel ideas, research outcomes and fundamental advances in all aspects of Computer Science, Computer Engineering, and Computer Applications. This is a peer-reviewed international journal with a vision to provide the academic and industrial community a platform for presenting original research ideas and applications. IJCA welcomes four special types of papers in addition to the regular research papers within its scope: (a) Papers for which all results could be easily reproducible. For such papers, the authors will be asked to upload "instructions for reproduction'''', possibly with the source codes or stable URLs (from where the codes could be downloaded). (b) Papers with negative results. For such papers, the experimental setting and negative results must be presented in detail. Also, why the negative results are important for the research community must be explained clearly. The rationale behind this kind of paper is that this would help researchers choose the correct approaches to solve problems and avoid the (already worked out) failed approaches. (c) Detailed report, case study and literature review articles about innovative software / hardware, new technology, high impact computer applications and future development with sufficient background and subject coverage. (d) Special issue papers focussing on a particular theme with significant importance or papers selected from a relevant conference with sufficient improvement and new material to differentiate from the papers published in a conference proceedings.