{"title":"SSL/TLS实现中rfc导向的证书验证差异测试","authors":"Chu Chen, Cong Tian, Zhenhua Duan, Liang Zhao","doi":"10.1145/3180155.3180226","DOIUrl":null,"url":null,"abstract":"Certificate validation in Secure Socket Layer or Transport Layer Security protocol (SSL/TLS) is critical to Internet security. Thus, it is significant to check whether certificate validation in SSL/TLS is correctly implemented. With this motivation, we propose a novel differential testing approach which is directed by the standard Request For Comments (RFC). First, rules of certificates are extracted automatically from RFCs. Second, low-level test cases are generated through dynamic symbolic execution. Third, high-level test cases, i.e. certificates, are assembled automatically. Finally, with the assembled certificates being test cases, certificate validations in SSL/TLS implementations are tested to reveal latent vulnerabilities or bugs. Our approach named RFCcert has the following advantages: (1) certificates of RFCcert are discrepancy-targeted since they are assembled according to standards instead of genetics; (2) with the obtained certificates, RFCcert not only reveals the invalidity of traditional differential testing but also is able to conduct testing that traditional differential testing cannot do; and (3) the supporting tool of RFCcert has been implemented and extensive experiments show that the approach is effective in finding bugs of SSL/TLS implementations.","PeriodicalId":6560,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","volume":"1 1","pages":"859-870"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"RFC-Directed Differential Testing of Certificate Validation in SSL/TLS Implementations\",\"authors\":\"Chu Chen, Cong Tian, Zhenhua Duan, Liang Zhao\",\"doi\":\"10.1145/3180155.3180226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Certificate validation in Secure Socket Layer or Transport Layer Security protocol (SSL/TLS) is critical to Internet security. Thus, it is significant to check whether certificate validation in SSL/TLS is correctly implemented. With this motivation, we propose a novel differential testing approach which is directed by the standard Request For Comments (RFC). First, rules of certificates are extracted automatically from RFCs. Second, low-level test cases are generated through dynamic symbolic execution. Third, high-level test cases, i.e. certificates, are assembled automatically. Finally, with the assembled certificates being test cases, certificate validations in SSL/TLS implementations are tested to reveal latent vulnerabilities or bugs. Our approach named RFCcert has the following advantages: (1) certificates of RFCcert are discrepancy-targeted since they are assembled according to standards instead of genetics; (2) with the obtained certificates, RFCcert not only reveals the invalidity of traditional differential testing but also is able to conduct testing that traditional differential testing cannot do; and (3) the supporting tool of RFCcert has been implemented and extensive experiments show that the approach is effective in finding bugs of SSL/TLS implementations.\",\"PeriodicalId\":6560,\"journal\":{\"name\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"volume\":\"1 1\",\"pages\":\"859-870\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3180155.3180226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3180155.3180226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RFC-Directed Differential Testing of Certificate Validation in SSL/TLS Implementations
Certificate validation in Secure Socket Layer or Transport Layer Security protocol (SSL/TLS) is critical to Internet security. Thus, it is significant to check whether certificate validation in SSL/TLS is correctly implemented. With this motivation, we propose a novel differential testing approach which is directed by the standard Request For Comments (RFC). First, rules of certificates are extracted automatically from RFCs. Second, low-level test cases are generated through dynamic symbolic execution. Third, high-level test cases, i.e. certificates, are assembled automatically. Finally, with the assembled certificates being test cases, certificate validations in SSL/TLS implementations are tested to reveal latent vulnerabilities or bugs. Our approach named RFCcert has the following advantages: (1) certificates of RFCcert are discrepancy-targeted since they are assembled according to standards instead of genetics; (2) with the obtained certificates, RFCcert not only reveals the invalidity of traditional differential testing but also is able to conduct testing that traditional differential testing cannot do; and (3) the supporting tool of RFCcert has been implemented and extensive experiments show that the approach is effective in finding bugs of SSL/TLS implementations.