4 × 4 MDS矩阵,基于单词的异或门最少

IF 0.7 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Shi Wang, Yongqiang Li, Shizhu Tian, Xiangyong Zeng
{"title":"4 × 4 MDS矩阵,基于单词的异或门最少","authors":"Shi Wang, Yongqiang Li, Shizhu Tian, Xiangyong Zeng","doi":"10.3934/amc.2021025","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>MDS matrices play an important role in the design of block ciphers, and constructing MDS matrices with fewer xor gates is of significant interest for lightweight ciphers. For this topic, Duval and Leurent proposed an approach to construct MDS matrices by using three linear operations in ToSC 2018. Taking words as elements, they found <inline-formula><tex-math id=\"M1\">\\begin{document}$ 16\\times16 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M2\">\\begin{document}$ 32\\times 32 $\\end{document}</tex-math></inline-formula> MDS matrices over <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\mathbb{F}_2 $\\end{document}</tex-math></inline-formula> with only <inline-formula><tex-math id=\"M4\">\\begin{document}$ 35 $\\end{document}</tex-math></inline-formula> xor gates and <inline-formula><tex-math id=\"M5\">\\begin{document}$ 67 $\\end{document}</tex-math></inline-formula> xor gates respectively, which are also the best known implementations up to now. Based on the same observation as their work, we consider three linear operations as three kinds of elementary linear operations of matrices, and obtain more MDS matrices with <inline-formula><tex-math id=\"M6\">\\begin{document}$ 35 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M7\">\\begin{document}$ 67 $\\end{document}</tex-math></inline-formula> xor gates. In addition, some <inline-formula><tex-math id=\"M8\">\\begin{document}$ 16\\times16 $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M9\">\\begin{document}$ 32\\times32 $\\end{document}</tex-math></inline-formula> involutory MDS matrices with only <inline-formula><tex-math id=\"M10\">\\begin{document}$ 36 $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M11\">\\begin{document}$ 72 $\\end{document}</tex-math></inline-formula> xor gates over <inline-formula><tex-math id=\"M12\">\\begin{document}$ \\mathbb{F}_2 $\\end{document}</tex-math></inline-formula> are also proposed, which are better than previous results. Moreover, our method can be extended to general linear groups, and we prove that the lower bound of the sequential xor count based on words for <inline-formula><tex-math id=\"M13\">\\begin{document}$ 4 \\times 4 $\\end{document}</tex-math></inline-formula> MDS matrix over general linear groups is <inline-formula><tex-math id=\"M14\">\\begin{document}$ 8n+2 $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"16 1","pages":"845-872"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Four by four MDS matrices with the fewest XOR gates based on words\",\"authors\":\"Shi Wang, Yongqiang Li, Shizhu Tian, Xiangyong Zeng\",\"doi\":\"10.3934/amc.2021025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>MDS matrices play an important role in the design of block ciphers, and constructing MDS matrices with fewer xor gates is of significant interest for lightweight ciphers. For this topic, Duval and Leurent proposed an approach to construct MDS matrices by using three linear operations in ToSC 2018. Taking words as elements, they found <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ 16\\\\times16 $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ 32\\\\times 32 $\\\\end{document}</tex-math></inline-formula> MDS matrices over <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\mathbb{F}_2 $\\\\end{document}</tex-math></inline-formula> with only <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ 35 $\\\\end{document}</tex-math></inline-formula> xor gates and <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ 67 $\\\\end{document}</tex-math></inline-formula> xor gates respectively, which are also the best known implementations up to now. Based on the same observation as their work, we consider three linear operations as three kinds of elementary linear operations of matrices, and obtain more MDS matrices with <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ 35 $\\\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ 67 $\\\\end{document}</tex-math></inline-formula> xor gates. In addition, some <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ 16\\\\times16 $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ 32\\\\times32 $\\\\end{document}</tex-math></inline-formula> involutory MDS matrices with only <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ 36 $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ 72 $\\\\end{document}</tex-math></inline-formula> xor gates over <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ \\\\mathbb{F}_2 $\\\\end{document}</tex-math></inline-formula> are also proposed, which are better than previous results. Moreover, our method can be extended to general linear groups, and we prove that the lower bound of the sequential xor count based on words for <inline-formula><tex-math id=\\\"M13\\\">\\\\begin{document}$ 4 \\\\times 4 $\\\\end{document}</tex-math></inline-formula> MDS matrix over general linear groups is <inline-formula><tex-math id=\\\"M14\\\">\\\\begin{document}$ 8n+2 $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":50859,\"journal\":{\"name\":\"Advances in Mathematics of Communications\",\"volume\":\"16 1\",\"pages\":\"845-872\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics of Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3934/amc.2021025\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2021025","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

摘要

MDS matrices play an important role in the design of block ciphers, and constructing MDS matrices with fewer xor gates is of significant interest for lightweight ciphers. For this topic, Duval and Leurent proposed an approach to construct MDS matrices by using three linear operations in ToSC 2018. Taking words as elements, they found \begin{document}$ 16\times16 $\end{document} and \begin{document}$ 32\times 32 $\end{document} MDS matrices over \begin{document}$ \mathbb{F}_2 $\end{document} with only \begin{document}$ 35 $\end{document} xor gates and \begin{document}$ 67 $\end{document} xor gates respectively, which are also the best known implementations up to now. Based on the same observation as their work, we consider three linear operations as three kinds of elementary linear operations of matrices, and obtain more MDS matrices with \begin{document}$ 35 $\end{document} and \begin{document}$ 67 $\end{document} xor gates. In addition, some \begin{document}$ 16\times16 $\end{document} or \begin{document}$ 32\times32 $\end{document} involutory MDS matrices with only \begin{document}$ 36 $\end{document} or \begin{document}$ 72 $\end{document} xor gates over \begin{document}$ \mathbb{F}_2 $\end{document} are also proposed, which are better than previous results. Moreover, our method can be extended to general linear groups, and we prove that the lower bound of the sequential xor count based on words for \begin{document}$ 4 \times 4 $\end{document} MDS matrix over general linear groups is \begin{document}$ 8n+2 $\end{document}.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Four by four MDS matrices with the fewest XOR gates based on words

MDS matrices play an important role in the design of block ciphers, and constructing MDS matrices with fewer xor gates is of significant interest for lightweight ciphers. For this topic, Duval and Leurent proposed an approach to construct MDS matrices by using three linear operations in ToSC 2018. Taking words as elements, they found \begin{document}$ 16\times16 $\end{document} and \begin{document}$ 32\times 32 $\end{document} MDS matrices over \begin{document}$ \mathbb{F}_2 $\end{document} with only \begin{document}$ 35 $\end{document} xor gates and \begin{document}$ 67 $\end{document} xor gates respectively, which are also the best known implementations up to now. Based on the same observation as their work, we consider three linear operations as three kinds of elementary linear operations of matrices, and obtain more MDS matrices with \begin{document}$ 35 $\end{document} and \begin{document}$ 67 $\end{document} xor gates. In addition, some \begin{document}$ 16\times16 $\end{document} or \begin{document}$ 32\times32 $\end{document} involutory MDS matrices with only \begin{document}$ 36 $\end{document} or \begin{document}$ 72 $\end{document} xor gates over \begin{document}$ \mathbb{F}_2 $\end{document} are also proposed, which are better than previous results. Moreover, our method can be extended to general linear groups, and we prove that the lower bound of the sequential xor count based on words for \begin{document}$ 4 \times 4 $\end{document} MDS matrix over general linear groups is \begin{document}$ 8n+2 $\end{document}.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics of Communications
Advances in Mathematics of Communications 工程技术-计算机:理论方法
CiteScore
2.20
自引率
22.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected. Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome. More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信