对偶Banach空间凸集上非扩张映射半群的不动点性质

IF 0.1 Q4 MATHEMATICS
A. Lau, Y. Zhang
{"title":"对偶Banach空间凸集上非扩张映射半群的不动点性质","authors":"A. Lau, Y. Zhang","doi":"10.2478/aupcsm-2018-0007","DOIUrl":null,"url":null,"abstract":"Abstract It has been a long-standing problem posed by the first author in a conference in Marseille in 1990 to characterize semitopological semigroups which have common fixed point property when acting on a nonempty weak* compact convex subset of a dual Banach space as weak* continuous and norm nonexpansive mappings. Our investigation in the paper centers around this problem. Our main results rely on the well-known Ky Fan’s inequality for convex functions.","PeriodicalId":53863,"journal":{"name":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","volume":"14 1","pages":"67 - 87"},"PeriodicalIF":0.1000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fixed point properties for semigroups of nonexpansive mappings on convex sets in dual Banach spaces\",\"authors\":\"A. Lau, Y. Zhang\",\"doi\":\"10.2478/aupcsm-2018-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It has been a long-standing problem posed by the first author in a conference in Marseille in 1990 to characterize semitopological semigroups which have common fixed point property when acting on a nonempty weak* compact convex subset of a dual Banach space as weak* continuous and norm nonexpansive mappings. Our investigation in the paper centers around this problem. Our main results rely on the well-known Ky Fan’s inequality for convex functions.\",\"PeriodicalId\":53863,\"journal\":{\"name\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"volume\":\"14 1\",\"pages\":\"67 - 87\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/aupcsm-2018-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Universitatis Paedagogicae Cracoviensis-Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/aupcsm-2018-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

摘要在1990年马赛的一次会议上,第一作者提出了一个长期存在的问题,即当作用于对偶Banach空间的非空弱*紧凸子集时,具有公共不动点性质的半拓扑半群是弱*连续和范数非扩张映射。本文的研究就是围绕这个问题展开的。我们的主要结果依赖于著名的Ky Fan不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed point properties for semigroups of nonexpansive mappings on convex sets in dual Banach spaces
Abstract It has been a long-standing problem posed by the first author in a conference in Marseille in 1990 to characterize semitopological semigroups which have common fixed point property when acting on a nonempty weak* compact convex subset of a dual Banach space as weak* continuous and norm nonexpansive mappings. Our investigation in the paper centers around this problem. Our main results rely on the well-known Ky Fan’s inequality for convex functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.10%
发文量
5
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信