逆G-Wishart分布与变分消息传递

Pub Date : 2021-10-07 DOI:10.1111/anzs.12339
Luca Maestrini, Matt P. Wand
{"title":"逆G-Wishart分布与变分消息传递","authors":"Luca Maestrini,&nbsp;Matt P. Wand","doi":"10.1111/anzs.12339","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Message passing on a factor graph is a powerful paradigm for the coding of approximate inference algorithms for arbitrarily large graphical models. The notion of a factor graph fragment allows for compartmentalisation of algebra and computer code. We show that the Inverse G-Wishart family of distributions enables fundamental variational message passing factor graph fragments to be expressed elegantly and succinctly. Such fragments arise in models for which approximate inference concerning covariance matrix or variance parameters is made, and are ubiquitous in contemporary statistics and machine learning.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The Inverse G-Wishart distribution and variational message passing\",\"authors\":\"Luca Maestrini,&nbsp;Matt P. Wand\",\"doi\":\"10.1111/anzs.12339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Message passing on a factor graph is a powerful paradigm for the coding of approximate inference algorithms for arbitrarily large graphical models. The notion of a factor graph fragment allows for compartmentalisation of algebra and computer code. We show that the Inverse G-Wishart family of distributions enables fundamental variational message passing factor graph fragments to be expressed elegantly and succinctly. Such fragments arise in models for which approximate inference concerning covariance matrix or variance parameters is made, and are ubiquitous in contemporary statistics and machine learning.</p>\\n </div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在因子图上传递消息是为任意大型图形模型编写近似推理算法的强大范例。因子图片段的概念允许代数和计算机代码的划分。我们证明了逆G-Wishart分布族使基本变分消息传递因子图片段能够优雅而简洁地表达。这种片段出现在对协方差矩阵或方差参数进行近似推理的模型中,在当代统计学和机器学习中无处不在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The Inverse G-Wishart distribution and variational message passing

Message passing on a factor graph is a powerful paradigm for the coding of approximate inference algorithms for arbitrarily large graphical models. The notion of a factor graph fragment allows for compartmentalisation of algebra and computer code. We show that the Inverse G-Wishart family of distributions enables fundamental variational message passing factor graph fragments to be expressed elegantly and succinctly. Such fragments arise in models for which approximate inference concerning covariance matrix or variance parameters is made, and are ubiquitous in contemporary statistics and machine learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信