{"title":"基于小lp和sdp的组合问题的不可逼近性","authors":"Gábor Braun, S. Pokutta, Daniel Zink","doi":"10.1145/2746539.2746550","DOIUrl":null,"url":null,"abstract":"Motivated by [12], we provide a framework for studying the size of linear programming formulations as well as semidefinite programming formulations of combinatorial optimization problems without encoding them first as linear programs. This is done via a factorization theorem for the optimization problem itself (and not a specific encoding of such). As a result we define a consistent reduction mechanism that degrades approximation factors in a controlled fashion and which, at the same time, is compatible with approximate linear and semidefinite programming formulations. Moreover, our reduction mechanism is a minor restriction of classical reductions establishing inapproximability in the context of PCP theorems. As a consequence we establish strong linear programming inapproximability (for LPs with a polynomial number of constraints) for several problems that are not 0/1-CSPs: we obtain a 3/2-epsilon inapproximability for Vertex Cover (which is not of the CSP type) answering an open question in [12], we answer a weak version of our sparse graph conjecture posed in [6] showing an inapproximability factor of 1/2+ε for bounded degree IndependentSet, and we establish inapproximability of MaxMULTICUT (a non-binary CSP). In the case of SDPs, we obtain relative inapproximability results for these problems.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Inapproximability of Combinatorial Problems via Small LPs and SDPs\",\"authors\":\"Gábor Braun, S. Pokutta, Daniel Zink\",\"doi\":\"10.1145/2746539.2746550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by [12], we provide a framework for studying the size of linear programming formulations as well as semidefinite programming formulations of combinatorial optimization problems without encoding them first as linear programs. This is done via a factorization theorem for the optimization problem itself (and not a specific encoding of such). As a result we define a consistent reduction mechanism that degrades approximation factors in a controlled fashion and which, at the same time, is compatible with approximate linear and semidefinite programming formulations. Moreover, our reduction mechanism is a minor restriction of classical reductions establishing inapproximability in the context of PCP theorems. As a consequence we establish strong linear programming inapproximability (for LPs with a polynomial number of constraints) for several problems that are not 0/1-CSPs: we obtain a 3/2-epsilon inapproximability for Vertex Cover (which is not of the CSP type) answering an open question in [12], we answer a weak version of our sparse graph conjecture posed in [6] showing an inapproximability factor of 1/2+ε for bounded degree IndependentSet, and we establish inapproximability of MaxMULTICUT (a non-binary CSP). In the case of SDPs, we obtain relative inapproximability results for these problems.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inapproximability of Combinatorial Problems via Small LPs and SDPs
Motivated by [12], we provide a framework for studying the size of linear programming formulations as well as semidefinite programming formulations of combinatorial optimization problems without encoding them first as linear programs. This is done via a factorization theorem for the optimization problem itself (and not a specific encoding of such). As a result we define a consistent reduction mechanism that degrades approximation factors in a controlled fashion and which, at the same time, is compatible with approximate linear and semidefinite programming formulations. Moreover, our reduction mechanism is a minor restriction of classical reductions establishing inapproximability in the context of PCP theorems. As a consequence we establish strong linear programming inapproximability (for LPs with a polynomial number of constraints) for several problems that are not 0/1-CSPs: we obtain a 3/2-epsilon inapproximability for Vertex Cover (which is not of the CSP type) answering an open question in [12], we answer a weak version of our sparse graph conjecture posed in [6] showing an inapproximability factor of 1/2+ε for bounded degree IndependentSet, and we establish inapproximability of MaxMULTICUT (a non-binary CSP). In the case of SDPs, we obtain relative inapproximability results for these problems.