{"title":"掺铋组织中光子与粒子束相互作用的有效原子序数和光子积累因子","authors":"Krishnamurthy Srinivasan, E. Samuel","doi":"10.2478/pjmpe-2022-0005","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: The doping of high Z nanoparticles into the tumor tissue increases the therapeutic efficiency of radiotherapy called nanoparticle enhanced radiotherapy (NERT). In the present study, we are identifying the effective types of radiation and effective doping concentration of bismuth radiosensitizer for NERT application by analyzing effective atomic number (Zeff) and photon buildup factor (PBF) of bismuth (Bi) doped soft tissue for the photon, electron, proton, alpha particle, and carbon ion interactions. Material and methods: The direct method was used for the calculation of Zeff for photon and electron beams (10 keV-30 MeV). The phy-X/ZeXTRa software was utilized for the particle beams such as proton, alpha particle, and carbon ions (1-15 MeV). Bismuth doping concentrations of 5, 10, 15, 20, 25 and 30 mg/g were considered. The PBF was calculated over 15 keV-15 MeV energies using phy-X/PSD software. Results: The low energy photon (<100 keV) interaction with a higher concentration of Bi dopped tissue gives the higher values of Zeff. The Zeff increased with the doping concentration of bismuth for all types of radiation. The Zeff was dependent on the type of radiation, the energy of radiation, and the concentration of Bi doping. The particle beams such as electron, proton, alpha particle, and carbon ion interaction gives the less values of Zeff has compared to photon beam interaction. On the other hand, the photon buildup factor values were decreased while increasing the Bi doping concentration. Conclusions: According to Zeff and PBF, the low energy photon and higher concentration of radiosensitizer are the most effective for nanoparticle enhanced radiotherapy application. Based on the calculated values of Zeff, the particle beams such as electron, proton, alpha particle, and carbon ions were less effective for NERT application. The presented values of Zeff and PBF are useful for the radiation dosimetry in NERT.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"13 1","pages":"37 - 51"},"PeriodicalIF":0.7000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effective atomic number and photon buildup factor of bismuth doped tissue for photon and particles beam interaction\",\"authors\":\"Krishnamurthy Srinivasan, E. Samuel\",\"doi\":\"10.2478/pjmpe-2022-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction: The doping of high Z nanoparticles into the tumor tissue increases the therapeutic efficiency of radiotherapy called nanoparticle enhanced radiotherapy (NERT). In the present study, we are identifying the effective types of radiation and effective doping concentration of bismuth radiosensitizer for NERT application by analyzing effective atomic number (Zeff) and photon buildup factor (PBF) of bismuth (Bi) doped soft tissue for the photon, electron, proton, alpha particle, and carbon ion interactions. Material and methods: The direct method was used for the calculation of Zeff for photon and electron beams (10 keV-30 MeV). The phy-X/ZeXTRa software was utilized for the particle beams such as proton, alpha particle, and carbon ions (1-15 MeV). Bismuth doping concentrations of 5, 10, 15, 20, 25 and 30 mg/g were considered. The PBF was calculated over 15 keV-15 MeV energies using phy-X/PSD software. Results: The low energy photon (<100 keV) interaction with a higher concentration of Bi dopped tissue gives the higher values of Zeff. The Zeff increased with the doping concentration of bismuth for all types of radiation. The Zeff was dependent on the type of radiation, the energy of radiation, and the concentration of Bi doping. The particle beams such as electron, proton, alpha particle, and carbon ion interaction gives the less values of Zeff has compared to photon beam interaction. On the other hand, the photon buildup factor values were decreased while increasing the Bi doping concentration. Conclusions: According to Zeff and PBF, the low energy photon and higher concentration of radiosensitizer are the most effective for nanoparticle enhanced radiotherapy application. Based on the calculated values of Zeff, the particle beams such as electron, proton, alpha particle, and carbon ions were less effective for NERT application. The presented values of Zeff and PBF are useful for the radiation dosimetry in NERT.\",\"PeriodicalId\":53955,\"journal\":{\"name\":\"Polish Journal of Medical Physics and Engineering\",\"volume\":\"13 1\",\"pages\":\"37 - 51\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Journal of Medical Physics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/pjmpe-2022-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Medical Physics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjmpe-2022-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Effective atomic number and photon buildup factor of bismuth doped tissue for photon and particles beam interaction
Abstract Introduction: The doping of high Z nanoparticles into the tumor tissue increases the therapeutic efficiency of radiotherapy called nanoparticle enhanced radiotherapy (NERT). In the present study, we are identifying the effective types of radiation and effective doping concentration of bismuth radiosensitizer for NERT application by analyzing effective atomic number (Zeff) and photon buildup factor (PBF) of bismuth (Bi) doped soft tissue for the photon, electron, proton, alpha particle, and carbon ion interactions. Material and methods: The direct method was used for the calculation of Zeff for photon and electron beams (10 keV-30 MeV). The phy-X/ZeXTRa software was utilized for the particle beams such as proton, alpha particle, and carbon ions (1-15 MeV). Bismuth doping concentrations of 5, 10, 15, 20, 25 and 30 mg/g were considered. The PBF was calculated over 15 keV-15 MeV energies using phy-X/PSD software. Results: The low energy photon (<100 keV) interaction with a higher concentration of Bi dopped tissue gives the higher values of Zeff. The Zeff increased with the doping concentration of bismuth for all types of radiation. The Zeff was dependent on the type of radiation, the energy of radiation, and the concentration of Bi doping. The particle beams such as electron, proton, alpha particle, and carbon ion interaction gives the less values of Zeff has compared to photon beam interaction. On the other hand, the photon buildup factor values were decreased while increasing the Bi doping concentration. Conclusions: According to Zeff and PBF, the low energy photon and higher concentration of radiosensitizer are the most effective for nanoparticle enhanced radiotherapy application. Based on the calculated values of Zeff, the particle beams such as electron, proton, alpha particle, and carbon ions were less effective for NERT application. The presented values of Zeff and PBF are useful for the radiation dosimetry in NERT.
期刊介绍:
Polish Journal of Medical Physics and Engineering (PJMPE) (Online ISSN: 1898-0309; Print ISSN: 1425-4689) is an official publication of the Polish Society of Medical Physics. It is a peer-reviewed, open access scientific journal with no publication fees. The issues are published quarterly online. The Journal publishes original contribution in medical physics and biomedical engineering.