强迫图的全外连通单音数

IF 0.3 Q4 MATHEMATICS
K. Ganesamoorthy, S. Lakshmi Priya
{"title":"强迫图的全外连通单音数","authors":"K. Ganesamoorthy, S. Lakshmi Priya","doi":"10.18500/1816-9791-2022-22-3-278-286","DOIUrl":null,"url":null,"abstract":". For a connected graph 𝐺 = ( 𝑉, 𝐸 ) of order at least two, a subset 𝑇 of a minimum total outer connected monophonic set 𝑆 of 𝐺 is a forcing total outer connected monophonic subset for 𝑆 if 𝑆 is the unique minimum total outer connected monophonic set containing 𝑇 . A forcing total outer connected monophonic subset for 𝑆 of minimum cardinality is a minimum forcing total outer connected monophonic subset of 𝑆 . The forcing total outer connected monophonic number 𝑓 𝑡𝑜𝑚 ( 𝑆 ) in 𝐺 is the cardinality of a minimum forcing total outer connected monophonic subset of 𝑆 . The forcing total outer connected monophonic number of 𝐺 is 𝑓 𝑡𝑜𝑚 ( 𝐺 ) = min { 𝑓 𝑡𝑜𝑚 ( 𝑆 ) } , where the minimum is taken over all minimum total outer connected monophonic sets 𝑆 in 𝐺 . We determine bounds for it and find the forcing total outer connected monophonic number of a certain class of graphs. It is shown that for every pair 𝑎, 𝑏 of positive integers with 0 (cid:54) 𝑎 < 𝑏 and 𝑏 (cid:62) 𝑎 + 4 , there exists a connected graph 𝐺 such that 𝑓 𝑡𝑜𝑚 ( 𝐺 ) = 𝑎 and 𝑐𝑚 𝑡𝑜 ( 𝐺 ) = 𝑏 , where 𝑐𝑚 𝑡𝑜 ( 𝐺 ) is the total outer connected monophonic number of a graph.","PeriodicalId":42789,"journal":{"name":"Izvestiya of Saratov University Mathematics Mechanics Informatics","volume":"58 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Forcing total outer connected monophonic number of a graph\",\"authors\":\"K. Ganesamoorthy, S. Lakshmi Priya\",\"doi\":\"10.18500/1816-9791-2022-22-3-278-286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". For a connected graph 𝐺 = ( 𝑉, 𝐸 ) of order at least two, a subset 𝑇 of a minimum total outer connected monophonic set 𝑆 of 𝐺 is a forcing total outer connected monophonic subset for 𝑆 if 𝑆 is the unique minimum total outer connected monophonic set containing 𝑇 . A forcing total outer connected monophonic subset for 𝑆 of minimum cardinality is a minimum forcing total outer connected monophonic subset of 𝑆 . The forcing total outer connected monophonic number 𝑓 𝑡𝑜𝑚 ( 𝑆 ) in 𝐺 is the cardinality of a minimum forcing total outer connected monophonic subset of 𝑆 . The forcing total outer connected monophonic number of 𝐺 is 𝑓 𝑡𝑜𝑚 ( 𝐺 ) = min { 𝑓 𝑡𝑜𝑚 ( 𝑆 ) } , where the minimum is taken over all minimum total outer connected monophonic sets 𝑆 in 𝐺 . We determine bounds for it and find the forcing total outer connected monophonic number of a certain class of graphs. It is shown that for every pair 𝑎, 𝑏 of positive integers with 0 (cid:54) 𝑎 < 𝑏 and 𝑏 (cid:62) 𝑎 + 4 , there exists a connected graph 𝐺 such that 𝑓 𝑡𝑜𝑚 ( 𝐺 ) = 𝑎 and 𝑐𝑚 𝑡𝑜 ( 𝐺 ) = 𝑏 , where 𝑐𝑚 𝑡𝑜 ( 𝐺 ) is the total outer connected monophonic number of a graph.\",\"PeriodicalId\":42789,\"journal\":{\"name\":\"Izvestiya of Saratov University Mathematics Mechanics Informatics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya of Saratov University Mathematics Mechanics Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/1816-9791-2022-22-3-278-286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya of Saratov University Mathematics Mechanics Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/1816-9791-2022-22-3-278-286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

. 对于至少二阶连通图𝐺= (s, s),如果𝑆是包含𝑇的唯一的最小总外连通单音集𝑆,则𝐺的最小总外连通单音集𝑆的子集𝑇是𝑆的强制总外连通单音集。最小基数𝑆的强制总外连通单音子集是𝑆的最小强制总外连通单音子集。𝐺中的强制总外连通单音数𝑓𝑡𝑜𝑚(𝑆)是𝑆的最小强制总外连通单音子集的基数。𝐺的强制总外连通单音数为𝑓𝑡𝑜𝑚(𝐺)= min{𝑓𝑡𝑜𝑚(𝑆)},其中最小值取𝐺中所有最小总外连通单音集𝑆。我们确定了它的界,并求出了一类图的强制全外连通单音数。结果表明,每一对𝑎𝑏的正整数0 (cid): 54)𝑎<𝑏和𝑏𝑎+ 4 (cid: 62),存在一个连通图𝐺这样𝑓𝑡𝑜𝑚(𝐺)=𝑎和𝑐𝑚𝑡𝑜(𝐺)=𝑏,哪里𝑐𝑚𝑡𝑜(𝐺)是完全外连接单声部的数量的一个图表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forcing total outer connected monophonic number of a graph
. For a connected graph 𝐺 = ( 𝑉, 𝐸 ) of order at least two, a subset 𝑇 of a minimum total outer connected monophonic set 𝑆 of 𝐺 is a forcing total outer connected monophonic subset for 𝑆 if 𝑆 is the unique minimum total outer connected monophonic set containing 𝑇 . A forcing total outer connected monophonic subset for 𝑆 of minimum cardinality is a minimum forcing total outer connected monophonic subset of 𝑆 . The forcing total outer connected monophonic number 𝑓 𝑡𝑜𝑚 ( 𝑆 ) in 𝐺 is the cardinality of a minimum forcing total outer connected monophonic subset of 𝑆 . The forcing total outer connected monophonic number of 𝐺 is 𝑓 𝑡𝑜𝑚 ( 𝐺 ) = min { 𝑓 𝑡𝑜𝑚 ( 𝑆 ) } , where the minimum is taken over all minimum total outer connected monophonic sets 𝑆 in 𝐺 . We determine bounds for it and find the forcing total outer connected monophonic number of a certain class of graphs. It is shown that for every pair 𝑎, 𝑏 of positive integers with 0 (cid:54) 𝑎 < 𝑏 and 𝑏 (cid:62) 𝑎 + 4 , there exists a connected graph 𝐺 such that 𝑓 𝑡𝑜𝑚 ( 𝐺 ) = 𝑎 and 𝑐𝑚 𝑡𝑜 ( 𝐺 ) = 𝑏 , where 𝑐𝑚 𝑡𝑜 ( 𝐺 ) is the total outer connected monophonic number of a graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
35
审稿时长
38 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信