{"title":"分散二极子对格拉夫的变形行为的影响:分子动力学","authors":"А.Х. Ахунова, Ю.А. Баимова","doi":"10.21883/jtf.2023.04.55030.6-23","DOIUrl":null,"url":null,"abstract":"The molecular dynamics simulation is used to analyze the features of the deformation behavior and the process of fracture of graphene with dislocation dipoles with different arm. Moreover, the wrinkling of graphene during deformation is taken into account, which greatly reduces the strength of graphene. It has been established that an increase in temperature slightly affects the mechanical properties of graphene with dislocation dipoles, in contrast to defect-free graphene and graphene with a Stone–Wales defect. It is shown that a change in the distance between dislocations in a dipole does not significantly affect the elastic modulus and graphene strength. However, the presence of dislocation dipoles can affect graphene wrinkling during stretching.","PeriodicalId":24036,"journal":{"name":"Журнал технической физики","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Влияние дислокационных диполей с разным плечом на деформационное поведение графена: молекулярная динамика\",\"authors\":\"А.Х. Ахунова, Ю.А. Баимова\",\"doi\":\"10.21883/jtf.2023.04.55030.6-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The molecular dynamics simulation is used to analyze the features of the deformation behavior and the process of fracture of graphene with dislocation dipoles with different arm. Moreover, the wrinkling of graphene during deformation is taken into account, which greatly reduces the strength of graphene. It has been established that an increase in temperature slightly affects the mechanical properties of graphene with dislocation dipoles, in contrast to defect-free graphene and graphene with a Stone–Wales defect. It is shown that a change in the distance between dislocations in a dipole does not significantly affect the elastic modulus and graphene strength. However, the presence of dislocation dipoles can affect graphene wrinkling during stretching.\",\"PeriodicalId\":24036,\"journal\":{\"name\":\"Журнал технической физики\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Журнал технической физики\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21883/jtf.2023.04.55030.6-23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Журнал технической физики","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21883/jtf.2023.04.55030.6-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Влияние дислокационных диполей с разным плечом на деформационное поведение графена: молекулярная динамика
The molecular dynamics simulation is used to analyze the features of the deformation behavior and the process of fracture of graphene with dislocation dipoles with different arm. Moreover, the wrinkling of graphene during deformation is taken into account, which greatly reduces the strength of graphene. It has been established that an increase in temperature slightly affects the mechanical properties of graphene with dislocation dipoles, in contrast to defect-free graphene and graphene with a Stone–Wales defect. It is shown that a change in the distance between dislocations in a dipole does not significantly affect the elastic modulus and graphene strength. However, the presence of dislocation dipoles can affect graphene wrinkling during stretching.