Lenon Diniz Seixas, Hilkija Gaïus Tosso, F. C. Corrêa, J. Eckert
{"title":"模糊控制混合储能系统的粒子群优化","authors":"Lenon Diniz Seixas, Hilkija Gaïus Tosso, F. C. Corrêa, J. Eckert","doi":"10.1109/VPPC49601.2020.9330939","DOIUrl":null,"url":null,"abstract":"With the increase in transportation electrification, one of the biggest challenges is to improve battery performance and its autonomy. One promising alternative is the hybrid energy storage system (HESS), composed of a battery associated with supercapacitors (SC). In this work, a fuzzy logic power management control for the HESS is developed aiming to increase the overall system autonomy. When batteries an SC are associated, the power management complexity increases considerably. Therefore, it is necessary to determine the correct power distribution between the storage devices, in order to enhance the system efficiency, by saving the battery of excessive efforts. To reach these objectives, a particle swarm optimization was applied to tune the fuzzy controller in a Matlab simulation system. Finally, the optimized fuzzy controlled HESS was capable to extend the autonomy by 66.67%, as compared to a single battery-powered system, under the same operating conditions.","PeriodicalId":6851,"journal":{"name":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Particle Swarm Optimization of a Fuzzy Controlled Hybrid Energy Storage System - HESS\",\"authors\":\"Lenon Diniz Seixas, Hilkija Gaïus Tosso, F. C. Corrêa, J. Eckert\",\"doi\":\"10.1109/VPPC49601.2020.9330939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase in transportation electrification, one of the biggest challenges is to improve battery performance and its autonomy. One promising alternative is the hybrid energy storage system (HESS), composed of a battery associated with supercapacitors (SC). In this work, a fuzzy logic power management control for the HESS is developed aiming to increase the overall system autonomy. When batteries an SC are associated, the power management complexity increases considerably. Therefore, it is necessary to determine the correct power distribution between the storage devices, in order to enhance the system efficiency, by saving the battery of excessive efforts. To reach these objectives, a particle swarm optimization was applied to tune the fuzzy controller in a Matlab simulation system. Finally, the optimized fuzzy controlled HESS was capable to extend the autonomy by 66.67%, as compared to a single battery-powered system, under the same operating conditions.\",\"PeriodicalId\":6851,\"journal\":{\"name\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC49601.2020.9330939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC49601.2020.9330939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Particle Swarm Optimization of a Fuzzy Controlled Hybrid Energy Storage System - HESS
With the increase in transportation electrification, one of the biggest challenges is to improve battery performance and its autonomy. One promising alternative is the hybrid energy storage system (HESS), composed of a battery associated with supercapacitors (SC). In this work, a fuzzy logic power management control for the HESS is developed aiming to increase the overall system autonomy. When batteries an SC are associated, the power management complexity increases considerably. Therefore, it is necessary to determine the correct power distribution between the storage devices, in order to enhance the system efficiency, by saving the battery of excessive efforts. To reach these objectives, a particle swarm optimization was applied to tune the fuzzy controller in a Matlab simulation system. Finally, the optimized fuzzy controlled HESS was capable to extend the autonomy by 66.67%, as compared to a single battery-powered system, under the same operating conditions.