{"title":"自然泥石流中速度剖面的测量:泥幕后的视角","authors":"G. Nagl, J. Hübl, R. Kaitna","doi":"10.2113/EEG-D-20-00115","DOIUrl":null,"url":null,"abstract":"The internal deformation behavior of natural debris flows is of interest for model development and model testing for debris-flow hazard mitigation. Up to now, only a view attempts were made to measure velocity profiles in natural debris flows due to low predictability and high destructive power of these flows. In this contribution we present recent advances of measuring in-situ velocity profiles together with flow parameters like flow depth, basal normal stress, and pore fluid pressure. For that a fin-shaped monitoring barrier was constructed in the Gadria creek (IT), laterally carrying an array of paired conductivity sensors. We present results from two debris-flow events with volumes of around 5,000 m3 each. Compared to the first event on July 10th, 2017, the second event on August 19th, 2017, was visually more liquid. Both debris flows exhibited significant longitudinal changes of flow properties like flow depth and density. The liquefaction ratios reached values up to unity in some sections of the flows. Velocity profiles for the July event were mostly concave up, while the profiles for the more liquid event in August were linear to convex. Though limited by boundary roughness at the wall and occasional sediment deposition on the force plates and pressure sensors, these measurements gain new insights of the dynamics of real-scale debris flows.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Measurements of Velocity Profiles in Natural Debris Flows: A View behind the Muddy Curtain\",\"authors\":\"G. Nagl, J. Hübl, R. Kaitna\",\"doi\":\"10.2113/EEG-D-20-00115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The internal deformation behavior of natural debris flows is of interest for model development and model testing for debris-flow hazard mitigation. Up to now, only a view attempts were made to measure velocity profiles in natural debris flows due to low predictability and high destructive power of these flows. In this contribution we present recent advances of measuring in-situ velocity profiles together with flow parameters like flow depth, basal normal stress, and pore fluid pressure. For that a fin-shaped monitoring barrier was constructed in the Gadria creek (IT), laterally carrying an array of paired conductivity sensors. We present results from two debris-flow events with volumes of around 5,000 m3 each. Compared to the first event on July 10th, 2017, the second event on August 19th, 2017, was visually more liquid. Both debris flows exhibited significant longitudinal changes of flow properties like flow depth and density. The liquefaction ratios reached values up to unity in some sections of the flows. Velocity profiles for the July event were mostly concave up, while the profiles for the more liquid event in August were linear to convex. Though limited by boundary roughness at the wall and occasional sediment deposition on the force plates and pressure sensors, these measurements gain new insights of the dynamics of real-scale debris flows.\",\"PeriodicalId\":50518,\"journal\":{\"name\":\"Environmental & Engineering Geoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental & Engineering Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/EEG-D-20-00115\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental & Engineering Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/EEG-D-20-00115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Measurements of Velocity Profiles in Natural Debris Flows: A View behind the Muddy Curtain
The internal deformation behavior of natural debris flows is of interest for model development and model testing for debris-flow hazard mitigation. Up to now, only a view attempts were made to measure velocity profiles in natural debris flows due to low predictability and high destructive power of these flows. In this contribution we present recent advances of measuring in-situ velocity profiles together with flow parameters like flow depth, basal normal stress, and pore fluid pressure. For that a fin-shaped monitoring barrier was constructed in the Gadria creek (IT), laterally carrying an array of paired conductivity sensors. We present results from two debris-flow events with volumes of around 5,000 m3 each. Compared to the first event on July 10th, 2017, the second event on August 19th, 2017, was visually more liquid. Both debris flows exhibited significant longitudinal changes of flow properties like flow depth and density. The liquefaction ratios reached values up to unity in some sections of the flows. Velocity profiles for the July event were mostly concave up, while the profiles for the more liquid event in August were linear to convex. Though limited by boundary roughness at the wall and occasional sediment deposition on the force plates and pressure sensors, these measurements gain new insights of the dynamics of real-scale debris flows.
期刊介绍:
The Environmental & Engineering Geoscience Journal publishes peer-reviewed manuscripts that address issues relating to the interaction of people with hydrologic and geologic systems. Theoretical and applied contributions are appropriate, and the primary criteria for acceptance are scientific and technical merit.