列草图:快速鲁棒谓词评估的扫描加速器

Brian Hentschel, Michael S. Kester, Stratos Idreos
{"title":"列草图:快速鲁棒谓词评估的扫描加速器","authors":"Brian Hentschel, Michael S. Kester, Stratos Idreos","doi":"10.1145/3183713.3196911","DOIUrl":null,"url":null,"abstract":"While numerous indexing and storage schemes have been developed to address the core functionality of predicate evaluation in data systems, they all require specific workload properties (query selectivity, data distribution, data clustering) to provide good performance and fail in other cases. We present a new class of indexing scheme, termed a Column Sketch, which improves the performance of predicate evaluation independently of workload properties. Column Sketches work primarily through the use of lossy compression schemes which are designed so that the index ingests data quickly, evaluates any query performantly, and has small memory footprint. A Column Sketch works by applying this lossy compression on a value-by-value basis, mapping base data to a representation of smaller fixed width codes. Queries are evaluated affirmatively or negatively for the vast majority of values using the compressed data, and only if needed check the base data for the remaining values. Column Sketches work over column, row, and hybrid storage layouts. We demonstrate that by using a Column Sketch, the select operator in modern analytic systems attains better CPU efficiency and less data movement than state-of-the-art storage and indexing schemes. Compared to standard scans, Column Sketches provide an improvement of 3x-6x for numerical attributes and 2.7x for categorical attributes. Compared to state-of-the-art scan accelerators such as Column Imprints and BitWeaving, Column Sketches perform 1.4 - 4.8× better.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Column Sketches: A Scan Accelerator for Rapid and Robust Predicate Evaluation\",\"authors\":\"Brian Hentschel, Michael S. Kester, Stratos Idreos\",\"doi\":\"10.1145/3183713.3196911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While numerous indexing and storage schemes have been developed to address the core functionality of predicate evaluation in data systems, they all require specific workload properties (query selectivity, data distribution, data clustering) to provide good performance and fail in other cases. We present a new class of indexing scheme, termed a Column Sketch, which improves the performance of predicate evaluation independently of workload properties. Column Sketches work primarily through the use of lossy compression schemes which are designed so that the index ingests data quickly, evaluates any query performantly, and has small memory footprint. A Column Sketch works by applying this lossy compression on a value-by-value basis, mapping base data to a representation of smaller fixed width codes. Queries are evaluated affirmatively or negatively for the vast majority of values using the compressed data, and only if needed check the base data for the remaining values. Column Sketches work over column, row, and hybrid storage layouts. We demonstrate that by using a Column Sketch, the select operator in modern analytic systems attains better CPU efficiency and less data movement than state-of-the-art storage and indexing schemes. Compared to standard scans, Column Sketches provide an improvement of 3x-6x for numerical attributes and 2.7x for categorical attributes. Compared to state-of-the-art scan accelerators such as Column Imprints and BitWeaving, Column Sketches perform 1.4 - 4.8× better.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3196911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3196911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

虽然已经开发了许多索引和存储方案来解决数据系统中谓词计算的核心功能,但它们都需要特定的工作负载属性(查询选择性、数据分布、数据聚类)来提供良好的性能,而在其他情况下则会失败。我们提出了一类新的索引方案,称为列草图,它提高了独立于工作负载属性的谓词评估性能。Column sketch主要通过使用有损压缩方案来工作,这种压缩方案的设计使得索引能够快速地获取数据,高效地评估任何查询,并且内存占用很小。Column Sketch的工作原理是在逐个值的基础上应用这种有损压缩,将基本数据映射到较小的固定宽度代码的表示。对于使用压缩数据的绝大多数值,查询会以肯定或否定的方式进行评估,只有在需要时才会检查基本数据中的剩余值。列草图可用于列、行和混合存储布局。我们证明,通过使用Column Sketch,现代分析系统中的select操作符比最先进的存储和索引方案获得更好的CPU效率和更少的数据移动。与标准扫描相比,Column sketch在数字属性方面提高了3 -6倍,在分类属性方面提高了2.7倍。与最先进的扫描加速器(如Column Imprints和BitWeaving)相比,Column sketch的性能要好1.4 - 4.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Column Sketches: A Scan Accelerator for Rapid and Robust Predicate Evaluation
While numerous indexing and storage schemes have been developed to address the core functionality of predicate evaluation in data systems, they all require specific workload properties (query selectivity, data distribution, data clustering) to provide good performance and fail in other cases. We present a new class of indexing scheme, termed a Column Sketch, which improves the performance of predicate evaluation independently of workload properties. Column Sketches work primarily through the use of lossy compression schemes which are designed so that the index ingests data quickly, evaluates any query performantly, and has small memory footprint. A Column Sketch works by applying this lossy compression on a value-by-value basis, mapping base data to a representation of smaller fixed width codes. Queries are evaluated affirmatively or negatively for the vast majority of values using the compressed data, and only if needed check the base data for the remaining values. Column Sketches work over column, row, and hybrid storage layouts. We demonstrate that by using a Column Sketch, the select operator in modern analytic systems attains better CPU efficiency and less data movement than state-of-the-art storage and indexing schemes. Compared to standard scans, Column Sketches provide an improvement of 3x-6x for numerical attributes and 2.7x for categorical attributes. Compared to state-of-the-art scan accelerators such as Column Imprints and BitWeaving, Column Sketches perform 1.4 - 4.8× better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信