单纯形晶格覆盖密度的下界

Miao Fu, F. Xue, C. Zong
{"title":"单纯形晶格覆盖密度的下界","authors":"Miao Fu, F. Xue, C. Zong","doi":"10.1137/22m1514155","DOIUrl":null,"url":null,"abstract":"This paper presents new lower bounds for the lattice covering densities of simplices by studying the Degree-Diameter Problem for abelian Cayley digraphs. In particular, it proves that the density of any lattice covering of a tetrahedron is at least $25/18$ and the density of any lattice covering of a four-dimensional simplex is at least $343/264$.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"4 1","pages":"1788-1804"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lower Bounds on Lattice Covering Densities of Simplices\",\"authors\":\"Miao Fu, F. Xue, C. Zong\",\"doi\":\"10.1137/22m1514155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents new lower bounds for the lattice covering densities of simplices by studying the Degree-Diameter Problem for abelian Cayley digraphs. In particular, it proves that the density of any lattice covering of a tetrahedron is at least $25/18$ and the density of any lattice covering of a four-dimensional simplex is at least $343/264$.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":\"4 1\",\"pages\":\"1788-1804\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1514155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1514155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文通过对阿贝尔Cayley有向图的度-直径问题的研究,给出了简单点格覆盖密度的新的下界。特别地,证明了四面体的任何晶格覆盖的密度至少为$25/18$,四维单纯形的任何晶格覆盖的密度至少为$343/264$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower Bounds on Lattice Covering Densities of Simplices
This paper presents new lower bounds for the lattice covering densities of simplices by studying the Degree-Diameter Problem for abelian Cayley digraphs. In particular, it proves that the density of any lattice covering of a tetrahedron is at least $25/18$ and the density of any lattice covering of a four-dimensional simplex is at least $343/264$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信