{"title":"单纯形晶格覆盖密度的下界","authors":"Miao Fu, F. Xue, C. Zong","doi":"10.1137/22m1514155","DOIUrl":null,"url":null,"abstract":"This paper presents new lower bounds for the lattice covering densities of simplices by studying the Degree-Diameter Problem for abelian Cayley digraphs. In particular, it proves that the density of any lattice covering of a tetrahedron is at least $25/18$ and the density of any lattice covering of a four-dimensional simplex is at least $343/264$.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"4 1","pages":"1788-1804"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lower Bounds on Lattice Covering Densities of Simplices\",\"authors\":\"Miao Fu, F. Xue, C. Zong\",\"doi\":\"10.1137/22m1514155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents new lower bounds for the lattice covering densities of simplices by studying the Degree-Diameter Problem for abelian Cayley digraphs. In particular, it proves that the density of any lattice covering of a tetrahedron is at least $25/18$ and the density of any lattice covering of a four-dimensional simplex is at least $343/264$.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":\"4 1\",\"pages\":\"1788-1804\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1514155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1514155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lower Bounds on Lattice Covering Densities of Simplices
This paper presents new lower bounds for the lattice covering densities of simplices by studying the Degree-Diameter Problem for abelian Cayley digraphs. In particular, it proves that the density of any lattice covering of a tetrahedron is at least $25/18$ and the density of any lattice covering of a four-dimensional simplex is at least $343/264$.