面向大规模科学应用的数据质量管理

Hongbo Zou, F. Zheng, M. Wolf, G. Eisenhauer, K. Schwan, H. Abbasi, Qing Liu, N. Podhorszki, S. Klasky
{"title":"面向大规模科学应用的数据质量管理","authors":"Hongbo Zou, F. Zheng, M. Wolf, G. Eisenhauer, K. Schwan, H. Abbasi, Qing Liu, N. Podhorszki, S. Klasky","doi":"10.1109/SC.Companion.2012.114","DOIUrl":null,"url":null,"abstract":"Increasingly larger scale simulations are generating an unprecedented amount of output data, causing researchers to explore new `data staging' methods that buffer, use, and/or reduce such data online rather than simply pushing it to disk. Leveraging the capabilities of data staging, this study explores the potential for data reduction via online data compression, first using general compression techniques and then proposing use-specific methods that permit users to define simple data queries that cause only the data identified by those queries to be emitted. Using online methods for code generation and deployment, with such dynamic data queries, end users can precisely identify the quality of information (QoI) of their output data, by explicitly determining what data may be lost vs. retained, in contrast to general-purpose lossy compression methods that do not provide such levels of control. The paper also describes the key elements of a quality-aware data management system (QADMS) for high-end machines enabled by this approach. Initial experimental results demonstrate that QADMS can effectively reduce data movement cost and improve the QoS while meeting the QoI constraint stated by users.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"27 1","pages":"816-820"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Quality-Aware Data Management for Large Scale Scientific Applications\",\"authors\":\"Hongbo Zou, F. Zheng, M. Wolf, G. Eisenhauer, K. Schwan, H. Abbasi, Qing Liu, N. Podhorszki, S. Klasky\",\"doi\":\"10.1109/SC.Companion.2012.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasingly larger scale simulations are generating an unprecedented amount of output data, causing researchers to explore new `data staging' methods that buffer, use, and/or reduce such data online rather than simply pushing it to disk. Leveraging the capabilities of data staging, this study explores the potential for data reduction via online data compression, first using general compression techniques and then proposing use-specific methods that permit users to define simple data queries that cause only the data identified by those queries to be emitted. Using online methods for code generation and deployment, with such dynamic data queries, end users can precisely identify the quality of information (QoI) of their output data, by explicitly determining what data may be lost vs. retained, in contrast to general-purpose lossy compression methods that do not provide such levels of control. The paper also describes the key elements of a quality-aware data management system (QADMS) for high-end machines enabled by this approach. Initial experimental results demonstrate that QADMS can effectively reduce data movement cost and improve the QoS while meeting the QoI constraint stated by users.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"27 1\",\"pages\":\"816-820\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

越来越大规模的模拟正在产生前所未有的大量输出数据,这促使研究人员探索新的“数据分级”方法,以缓冲、使用和/或在线减少这些数据,而不是简单地将其推送到磁盘上。利用数据分段的功能,本研究探索了通过在线数据压缩来减少数据的潜力,首先使用一般的压缩技术,然后提出了特定于使用的方法,允许用户定义简单的数据查询,只产生由这些查询识别的数据。使用在线方法进行代码生成和部署,通过这样的动态数据查询,最终用户可以通过显式地确定哪些数据可能丢失或保留,从而精确地识别其输出数据的信息质量(qi),这与不提供此类控制级别的通用有损压缩方法形成对比。本文还描述了通过这种方法实现的高端机器的质量感知数据管理系统(QADMS)的关键要素。初步实验结果表明,QADMS在满足用户要求的QoS约束条件下,能有效降低数据移动成本,提高QoS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality-Aware Data Management for Large Scale Scientific Applications
Increasingly larger scale simulations are generating an unprecedented amount of output data, causing researchers to explore new `data staging' methods that buffer, use, and/or reduce such data online rather than simply pushing it to disk. Leveraging the capabilities of data staging, this study explores the potential for data reduction via online data compression, first using general compression techniques and then proposing use-specific methods that permit users to define simple data queries that cause only the data identified by those queries to be emitted. Using online methods for code generation and deployment, with such dynamic data queries, end users can precisely identify the quality of information (QoI) of their output data, by explicitly determining what data may be lost vs. retained, in contrast to general-purpose lossy compression methods that do not provide such levels of control. The paper also describes the key elements of a quality-aware data management system (QADMS) for high-end machines enabled by this approach. Initial experimental results demonstrate that QADMS can effectively reduce data movement cost and improve the QoS while meeting the QoI constraint stated by users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信