{"title":"一维诺瑟域上的广义格","authors":"P. Př́ıhoda","doi":"10.1216/jca.2022.14.443","DOIUrl":null,"url":null,"abstract":"We study direct sum decompositions of pure projective torsion free modules over one-dimensional commutative noetherian domains. Having an inspiration in the representation theory of orders in separable algebras we study when every pure projective torsion free module is a direct sum of finitely generated modules. A satisfactory criterion is given for analytically unramified reduced local rings and for Bass domains.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized lattices over one-dimensional noetherian domains\",\"authors\":\"P. Př́ıhoda\",\"doi\":\"10.1216/jca.2022.14.443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study direct sum decompositions of pure projective torsion free modules over one-dimensional commutative noetherian domains. Having an inspiration in the representation theory of orders in separable algebras we study when every pure projective torsion free module is a direct sum of finitely generated modules. A satisfactory criterion is given for analytically unramified reduced local rings and for Bass domains.\",\"PeriodicalId\":49037,\"journal\":{\"name\":\"Journal of Commutative Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Commutative Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2022.14.443\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.443","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Generalized lattices over one-dimensional noetherian domains
We study direct sum decompositions of pure projective torsion free modules over one-dimensional commutative noetherian domains. Having an inspiration in the representation theory of orders in separable algebras we study when every pure projective torsion free module is a direct sum of finitely generated modules. A satisfactory criterion is given for analytically unramified reduced local rings and for Bass domains.
期刊介绍:
Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids.
The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.