一维诺瑟域上的广义格

IF 0.3 4区 数学 Q4 MATHEMATICS
P. Př́ıhoda
{"title":"一维诺瑟域上的广义格","authors":"P. Př́ıhoda","doi":"10.1216/jca.2022.14.443","DOIUrl":null,"url":null,"abstract":"We study direct sum decompositions of pure projective torsion free modules over one-dimensional commutative noetherian domains. Having an inspiration in the representation theory of orders in separable algebras we study when every pure projective torsion free module is a direct sum of finitely generated modules. A satisfactory criterion is given for analytically unramified reduced local rings and for Bass domains.","PeriodicalId":49037,"journal":{"name":"Journal of Commutative Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized lattices over one-dimensional noetherian domains\",\"authors\":\"P. Př́ıhoda\",\"doi\":\"10.1216/jca.2022.14.443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study direct sum decompositions of pure projective torsion free modules over one-dimensional commutative noetherian domains. Having an inspiration in the representation theory of orders in separable algebras we study when every pure projective torsion free module is a direct sum of finitely generated modules. A satisfactory criterion is given for analytically unramified reduced local rings and for Bass domains.\",\"PeriodicalId\":49037,\"journal\":{\"name\":\"Journal of Commutative Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Commutative Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2022.14.443\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commutative Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.443","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一维交换诺瑟域上纯射影无扭模的直接和分解。在可分离代数阶表示理论的启发下,我们研究了当每一个纯射影无扭模是有限生成模的直接和时。给出了解析化局部环和Bass域的满意判据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized lattices over one-dimensional noetherian domains
We study direct sum decompositions of pure projective torsion free modules over one-dimensional commutative noetherian domains. Having an inspiration in the representation theory of orders in separable algebras we study when every pure projective torsion free module is a direct sum of finitely generated modules. A satisfactory criterion is given for analytically unramified reduced local rings and for Bass domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
16.70%
发文量
28
审稿时长
>12 weeks
期刊介绍: Journal of Commutative Algebra publishes significant results in the area of commutative algebra and closely related fields including algebraic number theory, algebraic geometry, representation theory, semigroups and monoids. The journal also publishes substantial expository/survey papers as well as conference proceedings. Any person interested in editing such a proceeding should contact one of the managing editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信