恒定壁温线性拉伸薄板上的传热和流动分析:存在粘性加热的新颖局部非相似解

IF 2.3 4区 工程技术 Q1 MATHEMATICS, APPLIED
M. I. Afridi, Zhi‐Min Chen, N. Riaz, M. Qasim
{"title":"恒定壁温线性拉伸薄板上的传热和流动分析:存在粘性加热的新颖局部非相似解","authors":"M. I. Afridi, Zhi‐Min Chen, N. Riaz, M. Qasim","doi":"10.1002/zamm.202300003","DOIUrl":null,"url":null,"abstract":"Flow over a linearly stretching sheet having constant temperature is examined in this article. The effects of frictional heating (viscous dissipation) and Ohmic heating (Joule dissipation) are also studied. As evidenced by the literature, energy equations are not always self‐similar when viscous dissipation is considered. It strongly depends on the form of stretching velocity and the surface temperature of the sheet. To facilitate the similarity transformations in these cases, one must find a constraint between the sheet velocity and the surface temperature. It is also observed that for the linearly stretching sheet with constant wall temperature, it is not possible to achieve self‐similar equations because in this case, a local variable appears in the viscous dissipation parameter. Hence, this problem corresponds to the non‐similar flow. In this analysis, pseudo‐similarity transformation is employed, and the viscous dissipation parameter is selected as a non‐similarity variable. Governing equations are transferred into non‐similar forms then a method known as Sparrow‐Quack‐Boerner (SQB) local non‐similarity (LNS) is used to derive the equations up to the second level of truncations which are then solved numerically. The slope linear regression (SLR) technique is used to compare the solutions obtained from the equations of the first and second levels of truncation.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":"11 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heat transfer and flow analysis over a linearly stretching sheet with constant wall temperature: Novel local non‐similar solutions in the presence of viscous heating\",\"authors\":\"M. I. Afridi, Zhi‐Min Chen, N. Riaz, M. Qasim\",\"doi\":\"10.1002/zamm.202300003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow over a linearly stretching sheet having constant temperature is examined in this article. The effects of frictional heating (viscous dissipation) and Ohmic heating (Joule dissipation) are also studied. As evidenced by the literature, energy equations are not always self‐similar when viscous dissipation is considered. It strongly depends on the form of stretching velocity and the surface temperature of the sheet. To facilitate the similarity transformations in these cases, one must find a constraint between the sheet velocity and the surface temperature. It is also observed that for the linearly stretching sheet with constant wall temperature, it is not possible to achieve self‐similar equations because in this case, a local variable appears in the viscous dissipation parameter. Hence, this problem corresponds to the non‐similar flow. In this analysis, pseudo‐similarity transformation is employed, and the viscous dissipation parameter is selected as a non‐similarity variable. Governing equations are transferred into non‐similar forms then a method known as Sparrow‐Quack‐Boerner (SQB) local non‐similarity (LNS) is used to derive the equations up to the second level of truncations which are then solved numerically. The slope linear regression (SLR) technique is used to compare the solutions obtained from the equations of the first and second levels of truncation.\",\"PeriodicalId\":23924,\"journal\":{\"name\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300003\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/zamm.202300003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat transfer and flow analysis over a linearly stretching sheet with constant wall temperature: Novel local non‐similar solutions in the presence of viscous heating
Flow over a linearly stretching sheet having constant temperature is examined in this article. The effects of frictional heating (viscous dissipation) and Ohmic heating (Joule dissipation) are also studied. As evidenced by the literature, energy equations are not always self‐similar when viscous dissipation is considered. It strongly depends on the form of stretching velocity and the surface temperature of the sheet. To facilitate the similarity transformations in these cases, one must find a constraint between the sheet velocity and the surface temperature. It is also observed that for the linearly stretching sheet with constant wall temperature, it is not possible to achieve self‐similar equations because in this case, a local variable appears in the viscous dissipation parameter. Hence, this problem corresponds to the non‐similar flow. In this analysis, pseudo‐similarity transformation is employed, and the viscous dissipation parameter is selected as a non‐similarity variable. Governing equations are transferred into non‐similar forms then a method known as Sparrow‐Quack‐Boerner (SQB) local non‐similarity (LNS) is used to derive the equations up to the second level of truncations which are then solved numerically. The slope linear regression (SLR) technique is used to compare the solutions obtained from the equations of the first and second levels of truncation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
8.70%
发文量
199
审稿时长
3.0 months
期刊介绍: ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信