辅助验证计算模拟的验收抽样

Andrew J. Collins, Erika F. Frydenlund, Christopher J. Lynch, R. M. Robinson
{"title":"辅助验证计算模拟的验收抽样","authors":"Andrew J. Collins, Erika F. Frydenlund, Christopher J. Lynch, R. M. Robinson","doi":"10.1142/s1793962322500441","DOIUrl":null,"url":null,"abstract":"Advances in computing allow for the construction of increasingly large and complex models and simulations. Exhaustive error checking of these intricate, large computational simulation models is daunting and potentially impractical. This paper explores an approach to error-checking simulation model components using an Acceptance Sampling methodology from the field of industrial manufacturing. We propose a systematic process in which a simulation inspector examines only a fraction of the computational model elements to measure the errors present. Our proposed process could support established verification processes by sampling the simulation components to identify whether the model is acceptably error free and which components require correcting. The proposed methodology relies on several statistical constraints but serves the interests of simulation professionals as part of the overall verification process. We illustrate the application and usefulness of our methodology through a real-world case study of a citywide microscopic transportation model.","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"79 1","pages":"2250044:1-2250044:28"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acceptance sampling to aid in the verification of computational simulations\",\"authors\":\"Andrew J. Collins, Erika F. Frydenlund, Christopher J. Lynch, R. M. Robinson\",\"doi\":\"10.1142/s1793962322500441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in computing allow for the construction of increasingly large and complex models and simulations. Exhaustive error checking of these intricate, large computational simulation models is daunting and potentially impractical. This paper explores an approach to error-checking simulation model components using an Acceptance Sampling methodology from the field of industrial manufacturing. We propose a systematic process in which a simulation inspector examines only a fraction of the computational model elements to measure the errors present. Our proposed process could support established verification processes by sampling the simulation components to identify whether the model is acceptably error free and which components require correcting. The proposed methodology relies on several statistical constraints but serves the interests of simulation professionals as part of the overall verification process. We illustrate the application and usefulness of our methodology through a real-world case study of a citywide microscopic transportation model.\",\"PeriodicalId\":13657,\"journal\":{\"name\":\"Int. J. Model. Simul. Sci. Comput.\",\"volume\":\"79 1\",\"pages\":\"2250044:1-2250044:28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Model. Simul. Sci. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793962322500441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Model. Simul. Sci. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793962322500441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机技术的进步使构建越来越大、越来越复杂的模型和模拟成为可能。对这些复杂的大型计算模拟模型进行详尽的错误检查是令人生畏的,而且可能不切实际。本文探讨了一种使用工业制造领域的验收抽样方法对仿真模型组件进行错误检查的方法。我们提出了一个系统的过程,在这个过程中,模拟检查员只检查一小部分计算模型元素来测量存在的误差。我们建议的流程可以通过采样模拟组件来支持已建立的验证流程,以确定模型是否可以接受无错误,以及哪些组件需要纠正。提出的方法依赖于几个统计约束,但服务于仿真专业人员的利益,作为整个验证过程的一部分。我们通过一个城市微观交通模型的真实案例研究来说明我们方法的应用和有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acceptance sampling to aid in the verification of computational simulations
Advances in computing allow for the construction of increasingly large and complex models and simulations. Exhaustive error checking of these intricate, large computational simulation models is daunting and potentially impractical. This paper explores an approach to error-checking simulation model components using an Acceptance Sampling methodology from the field of industrial manufacturing. We propose a systematic process in which a simulation inspector examines only a fraction of the computational model elements to measure the errors present. Our proposed process could support established verification processes by sampling the simulation components to identify whether the model is acceptably error free and which components require correcting. The proposed methodology relies on several statistical constraints but serves the interests of simulation professionals as part of the overall verification process. We illustrate the application and usefulness of our methodology through a real-world case study of a citywide microscopic transportation model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信