{"title":"铝磷混合氧化物alpo4的表面化学性质","authors":"J. Peri","doi":"10.1039/DF9715200055","DOIUrl":null,"url":null,"abstract":"The surface chemistry of pure AlPO4 was studied by infra-red spectroscopy in an attempt to explain why this material shows low catalytic activity despite its high acidity. Two major bands (3680 and 3800 cm–1) in spectra of dry AlPO4 were shown to represent chemically distinct types of surface OH groups. The band at 3800 cm–1 is assigned to Al—OH and that at 3680 cm–1 to P—OH. Study of adsorbed NH3 and pyridine showed both Lewis and Bronsted acid sites on the surface. Chemisorption of NH3 also produced NH2 and OH groups, showing the presence of “strained” oxide links. Adsorption of CO2 and HCI revealed very few “α-sites” or reactive surface oxide ions. The evidence suggests that the surface largely resembles a prism face (10text-decoration:overline10) of tridymite-form AlPO4, holding vicinal pairs of OH groups, with one group attached to Al and the other to P. Condensation produces acidic Al—O—P links in which O is held primarily by the P atom. The inactivity of AlPO4 probably reflects the inadequacy of PO groups as base sites rather than a lack of suitable acid sites.","PeriodicalId":11262,"journal":{"name":"Discussions of The Faraday Society","volume":"2 1","pages":"55-65"},"PeriodicalIF":0.0000,"publicationDate":"1971-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":"{\"title\":\"Surface chemistry of AlPO4—a mixed oxide of Al and P\",\"authors\":\"J. Peri\",\"doi\":\"10.1039/DF9715200055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The surface chemistry of pure AlPO4 was studied by infra-red spectroscopy in an attempt to explain why this material shows low catalytic activity despite its high acidity. Two major bands (3680 and 3800 cm–1) in spectra of dry AlPO4 were shown to represent chemically distinct types of surface OH groups. The band at 3800 cm–1 is assigned to Al—OH and that at 3680 cm–1 to P—OH. Study of adsorbed NH3 and pyridine showed both Lewis and Bronsted acid sites on the surface. Chemisorption of NH3 also produced NH2 and OH groups, showing the presence of “strained” oxide links. Adsorption of CO2 and HCI revealed very few “α-sites” or reactive surface oxide ions. The evidence suggests that the surface largely resembles a prism face (10text-decoration:overline10) of tridymite-form AlPO4, holding vicinal pairs of OH groups, with one group attached to Al and the other to P. Condensation produces acidic Al—O—P links in which O is held primarily by the P atom. The inactivity of AlPO4 probably reflects the inadequacy of PO groups as base sites rather than a lack of suitable acid sites.\",\"PeriodicalId\":11262,\"journal\":{\"name\":\"Discussions of The Faraday Society\",\"volume\":\"2 1\",\"pages\":\"55-65\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1971-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"125\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussions of The Faraday Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/DF9715200055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussions of The Faraday Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/DF9715200055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125
摘要
用红外光谱研究了纯AlPO4的表面化学性质,试图解释为什么这种材料在高酸度的情况下表现出低催化活性。干燥AlPO4光谱中的两个主要波段(3680和3800 cm-1)显示了化学上不同类型的表面OH基团。3800 cm-1的波段分配给Al-OH, 3680 cm-1的波段分配给P-OH。对吸附NH3和吡啶的研究表明,表面存在Lewis和Bronsted酸位点。NH3的化学吸附也产生了NH2和OH基团,显示出“张力”氧化键的存在。对CO2和HCI的吸附显示很少有α-位点或活性表面氧化离子。证据表明,其表面很大程度上类似于三聚体形式的AlPO4的棱柱面,含有相邻的OH对,其中一个基团与Al相连,另一个与P相连。缩合产生酸性的Al - O - P连接,其中O主要由P原子保持。AlPO4的不活性可能反映了PO基团作为碱基的不足,而不是缺乏合适的酸位。
Surface chemistry of AlPO4—a mixed oxide of Al and P
The surface chemistry of pure AlPO4 was studied by infra-red spectroscopy in an attempt to explain why this material shows low catalytic activity despite its high acidity. Two major bands (3680 and 3800 cm–1) in spectra of dry AlPO4 were shown to represent chemically distinct types of surface OH groups. The band at 3800 cm–1 is assigned to Al—OH and that at 3680 cm–1 to P—OH. Study of adsorbed NH3 and pyridine showed both Lewis and Bronsted acid sites on the surface. Chemisorption of NH3 also produced NH2 and OH groups, showing the presence of “strained” oxide links. Adsorption of CO2 and HCI revealed very few “α-sites” or reactive surface oxide ions. The evidence suggests that the surface largely resembles a prism face (10text-decoration:overline10) of tridymite-form AlPO4, holding vicinal pairs of OH groups, with one group attached to Al and the other to P. Condensation produces acidic Al—O—P links in which O is held primarily by the P atom. The inactivity of AlPO4 probably reflects the inadequacy of PO groups as base sites rather than a lack of suitable acid sites.