G. Aziz, S. W. Shneen, Fatin Nabeel Abdullah, D. H. Shaker
{"title":"先进的直流电机最优GWO-PID控制器","authors":"G. Aziz, S. W. Shneen, Fatin Nabeel Abdullah, D. H. Shaker","doi":"10.11591/ijaas.v11.i3.pp263-276","DOIUrl":null,"url":null,"abstract":"The current work aims to use traditional control algorithms and advanced optimization algorithms that was chosen for its ease of control and the possibility of using it in many industrial applications. By setting the appropriate specifications for the simulation model and after conducting the planned tests that simulate different applications of the motor’s work within electrical systems, the results proved to obtain good performance of the motor’s work, better response, high accuracy, in addition to the speed. The goal is to design and tune a proportional–integral–derivative (PID) controller by grey wolf optimization (GWO) using T.F for a direct current (DC) motor. To adjust the parameters of the traditional controllers using the optimum advanced, an appropriate mechanism and technology from the advanced optimization techniques were chosen, as the gray wolf technology algorithm was chosen as an optimization technique and integral time absolute error (ITAE) to adjust the parameters of the traditional PID controller.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Advanced optimal GWO-PID controller for DC motor\",\"authors\":\"G. Aziz, S. W. Shneen, Fatin Nabeel Abdullah, D. H. Shaker\",\"doi\":\"10.11591/ijaas.v11.i3.pp263-276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current work aims to use traditional control algorithms and advanced optimization algorithms that was chosen for its ease of control and the possibility of using it in many industrial applications. By setting the appropriate specifications for the simulation model and after conducting the planned tests that simulate different applications of the motor’s work within electrical systems, the results proved to obtain good performance of the motor’s work, better response, high accuracy, in addition to the speed. The goal is to design and tune a proportional–integral–derivative (PID) controller by grey wolf optimization (GWO) using T.F for a direct current (DC) motor. To adjust the parameters of the traditional controllers using the optimum advanced, an appropriate mechanism and technology from the advanced optimization techniques were chosen, as the gray wolf technology algorithm was chosen as an optimization technique and integral time absolute error (ITAE) to adjust the parameters of the traditional PID controller.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijaas.v11.i3.pp263-276\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijaas.v11.i3.pp263-276","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The current work aims to use traditional control algorithms and advanced optimization algorithms that was chosen for its ease of control and the possibility of using it in many industrial applications. By setting the appropriate specifications for the simulation model and after conducting the planned tests that simulate different applications of the motor’s work within electrical systems, the results proved to obtain good performance of the motor’s work, better response, high accuracy, in addition to the speed. The goal is to design and tune a proportional–integral–derivative (PID) controller by grey wolf optimization (GWO) using T.F for a direct current (DC) motor. To adjust the parameters of the traditional controllers using the optimum advanced, an appropriate mechanism and technology from the advanced optimization techniques were chosen, as the gray wolf technology algorithm was chosen as an optimization technique and integral time absolute error (ITAE) to adjust the parameters of the traditional PID controller.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.