T. Bandaragoda, Daswin De Silva, D. Kleyko, Evgeny Osipov, U. Wiklund, D. Alahakoon
{"title":"基于增量机器学习和超维计算的城市道路交通轨迹聚类研究","authors":"T. Bandaragoda, Daswin De Silva, D. Kleyko, Evgeny Osipov, U. Wiklund, D. Alahakoon","doi":"10.1109/ITSC.2019.8917320","DOIUrl":null,"url":null,"abstract":"Road traffic congestion in urban environments poses an increasingly complex challenge of detection, profiling and prediction. Although public policy promotes transport alternatives and new infrastructure, traffic congestion is highly prevalent and continues to be the lead cause for numerous social, economic and environmental issues. Although a significant volume of research has been reported on road traffic prediction, profiling of traffic has received much less attention. In this paper we address two key problems in traffic profiling by proposing a novel unsupervised incremental learning approach for road traffic congestion detection and profiling, dynamically over time. This approach uses (a) hyperdimensional computing to enable capture variable-length trajectories of commuter trips represented as vehicular movement across intersections, and (b) transforms these into feature vectors that can be incrementally learned over time by the Incremental Knowledge Acquiring Self-Learning (IKASL) algorithm. The proposed approach was tested and evaluated on a dataset consisting of approximately 190 million vehicular movement records obtained from 1,400 Bluetooth identifiers placed at the intersections of the arterial road network in the State of Victoria, Australia.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"12 1","pages":"1664-1670"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Trajectory clustering of road traffic in urban environments using incremental machine learning in combination with hyperdimensional computing\",\"authors\":\"T. Bandaragoda, Daswin De Silva, D. Kleyko, Evgeny Osipov, U. Wiklund, D. Alahakoon\",\"doi\":\"10.1109/ITSC.2019.8917320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Road traffic congestion in urban environments poses an increasingly complex challenge of detection, profiling and prediction. Although public policy promotes transport alternatives and new infrastructure, traffic congestion is highly prevalent and continues to be the lead cause for numerous social, economic and environmental issues. Although a significant volume of research has been reported on road traffic prediction, profiling of traffic has received much less attention. In this paper we address two key problems in traffic profiling by proposing a novel unsupervised incremental learning approach for road traffic congestion detection and profiling, dynamically over time. This approach uses (a) hyperdimensional computing to enable capture variable-length trajectories of commuter trips represented as vehicular movement across intersections, and (b) transforms these into feature vectors that can be incrementally learned over time by the Incremental Knowledge Acquiring Self-Learning (IKASL) algorithm. The proposed approach was tested and evaluated on a dataset consisting of approximately 190 million vehicular movement records obtained from 1,400 Bluetooth identifiers placed at the intersections of the arterial road network in the State of Victoria, Australia.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"12 1\",\"pages\":\"1664-1670\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Trajectory clustering of road traffic in urban environments using incremental machine learning in combination with hyperdimensional computing
Road traffic congestion in urban environments poses an increasingly complex challenge of detection, profiling and prediction. Although public policy promotes transport alternatives and new infrastructure, traffic congestion is highly prevalent and continues to be the lead cause for numerous social, economic and environmental issues. Although a significant volume of research has been reported on road traffic prediction, profiling of traffic has received much less attention. In this paper we address two key problems in traffic profiling by proposing a novel unsupervised incremental learning approach for road traffic congestion detection and profiling, dynamically over time. This approach uses (a) hyperdimensional computing to enable capture variable-length trajectories of commuter trips represented as vehicular movement across intersections, and (b) transforms these into feature vectors that can be incrementally learned over time by the Incremental Knowledge Acquiring Self-Learning (IKASL) algorithm. The proposed approach was tested and evaluated on a dataset consisting of approximately 190 million vehicular movement records obtained from 1,400 Bluetooth identifiers placed at the intersections of the arterial road network in the State of Victoria, Australia.