{"title":"回归hoeffding算法中的特征排序","authors":"J. Duarte, João Gama","doi":"10.1145/3019612.3019670","DOIUrl":null,"url":null,"abstract":"Feature selection and feature ranking are two aspects of the same learning task. They are well studied in batch scenarios, but not in the streaming setting. This paper presents a study on feature ranking from data streams in online learning regression models. The main challenge here is the relevance of features might change over time: features relevant in the past might be irrelevant now and vice-versa. We propose three new online feature ranking algorithms designed for Hoeffding algorithms. We have implemented the three methods in AMRules, a streaming regression algorithm to learn model rules. We compare their behaviour experimentally and present the pros and cons of each method.","PeriodicalId":20728,"journal":{"name":"Proceedings of the Symposium on Applied Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Feature ranking in hoeffding algorithms for regression\",\"authors\":\"J. Duarte, João Gama\",\"doi\":\"10.1145/3019612.3019670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection and feature ranking are two aspects of the same learning task. They are well studied in batch scenarios, but not in the streaming setting. This paper presents a study on feature ranking from data streams in online learning regression models. The main challenge here is the relevance of features might change over time: features relevant in the past might be irrelevant now and vice-versa. We propose three new online feature ranking algorithms designed for Hoeffding algorithms. We have implemented the three methods in AMRules, a streaming regression algorithm to learn model rules. We compare their behaviour experimentally and present the pros and cons of each method.\",\"PeriodicalId\":20728,\"journal\":{\"name\":\"Proceedings of the Symposium on Applied Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Symposium on Applied Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3019612.3019670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3019612.3019670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature ranking in hoeffding algorithms for regression
Feature selection and feature ranking are two aspects of the same learning task. They are well studied in batch scenarios, but not in the streaming setting. This paper presents a study on feature ranking from data streams in online learning regression models. The main challenge here is the relevance of features might change over time: features relevant in the past might be irrelevant now and vice-versa. We propose three new online feature ranking algorithms designed for Hoeffding algorithms. We have implemented the three methods in AMRules, a streaming regression algorithm to learn model rules. We compare their behaviour experimentally and present the pros and cons of each method.