Hyeon-cheol Park, Yeong-Hyeon Seo, Seung-Bum Yang, Min-seog Choi, Seungwan Lee, Woon-Bae Kim, K. Jeong
{"title":"采用非对称共振光纤扫描仪的前视内镜OCT导管","authors":"Hyeon-cheol Park, Yeong-Hyeon Seo, Seung-Bum Yang, Min-seog Choi, Seungwan Lee, Woon-Bae Kim, K. Jeong","doi":"10.1109/OMN.2013.6659032","DOIUrl":null,"url":null,"abstract":"This work presents a forward viewing endoscopic OCT catheter based on a resonant fiber scanning. Two-dimensional optical scanning in a Lissajous pattern was realized by a piezoelectric tube with quartered electrodes and asymmetrically resonant fiber cantilever. Asymmetrically resonant fiber cantilever was assembled by additional fiber fragment and silicon supporting structure to avoid mechanical coupling effect at resonance. The endoscopic catheter of 3.2 mm diameter was assembled and combined with SD-OCT system. Three dimensional images were directly reconstructed by mapping the A-line data sets along non-repeating Lissajous trajectories with high temporal resolution.","PeriodicalId":6334,"journal":{"name":"2013 International Conference on Optical MEMS and Nanophotonics (OMN)","volume":"16 1","pages":"7-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Forward-viewing endoscopic OCT catheter using asymmetrically resonant fiber scanner\",\"authors\":\"Hyeon-cheol Park, Yeong-Hyeon Seo, Seung-Bum Yang, Min-seog Choi, Seungwan Lee, Woon-Bae Kim, K. Jeong\",\"doi\":\"10.1109/OMN.2013.6659032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a forward viewing endoscopic OCT catheter based on a resonant fiber scanning. Two-dimensional optical scanning in a Lissajous pattern was realized by a piezoelectric tube with quartered electrodes and asymmetrically resonant fiber cantilever. Asymmetrically resonant fiber cantilever was assembled by additional fiber fragment and silicon supporting structure to avoid mechanical coupling effect at resonance. The endoscopic catheter of 3.2 mm diameter was assembled and combined with SD-OCT system. Three dimensional images were directly reconstructed by mapping the A-line data sets along non-repeating Lissajous trajectories with high temporal resolution.\",\"PeriodicalId\":6334,\"journal\":{\"name\":\"2013 International Conference on Optical MEMS and Nanophotonics (OMN)\",\"volume\":\"16 1\",\"pages\":\"7-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Optical MEMS and Nanophotonics (OMN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OMN.2013.6659032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Optical MEMS and Nanophotonics (OMN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMN.2013.6659032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forward-viewing endoscopic OCT catheter using asymmetrically resonant fiber scanner
This work presents a forward viewing endoscopic OCT catheter based on a resonant fiber scanning. Two-dimensional optical scanning in a Lissajous pattern was realized by a piezoelectric tube with quartered electrodes and asymmetrically resonant fiber cantilever. Asymmetrically resonant fiber cantilever was assembled by additional fiber fragment and silicon supporting structure to avoid mechanical coupling effect at resonance. The endoscopic catheter of 3.2 mm diameter was assembled and combined with SD-OCT system. Three dimensional images were directly reconstructed by mapping the A-line data sets along non-repeating Lissajous trajectories with high temporal resolution.