用exp(O(n1/3))个样本进行痕量重建

F. Nazarov, Y. Peres
{"title":"用exp(O(n1/3))个样本进行痕量重建","authors":"F. Nazarov, Y. Peres","doi":"10.1145/3055399.3055494","DOIUrl":null,"url":null,"abstract":"In the trace reconstruction problem, an unknown bit string x ∈ {0,1}n is observed through the deletion channel, which deletes each bit of x with some constant probability q, yielding a contracted string x. How many independent copies of x are needed to reconstruct x with high probability? Prior to this work, the best upper bound, due to Holenstein, Mitzenmacher, Panigrahy, and Wieder (2008), was exp(O(n1/2)). We improve this bound to exp(O(n1/3)) using statistics of individual bits in the output and show that this bound is sharp in the restricted model where this is the only information used. Our method, that uses elementary complex analysis, can also handle insertions. Similar results were obtained independently and simultaneously by Anindya De, Ryan O'Donnell and Rocco Servedio.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Trace reconstruction with exp(O(n1/3)) samples\",\"authors\":\"F. Nazarov, Y. Peres\",\"doi\":\"10.1145/3055399.3055494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the trace reconstruction problem, an unknown bit string x ∈ {0,1}n is observed through the deletion channel, which deletes each bit of x with some constant probability q, yielding a contracted string x. How many independent copies of x are needed to reconstruct x with high probability? Prior to this work, the best upper bound, due to Holenstein, Mitzenmacher, Panigrahy, and Wieder (2008), was exp(O(n1/2)). We improve this bound to exp(O(n1/3)) using statistics of individual bits in the output and show that this bound is sharp in the restricted model where this is the only information used. Our method, that uses elementary complex analysis, can also handle insertions. Similar results were obtained independently and simultaneously by Anindya De, Ryan O'Donnell and Rocco Servedio.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

在轨迹重建问题中,通过删除通道观察到一个未知的位串x∈{0,1}n,该通道以一定的常数概率q删除x的每个位,得到一个压缩的字符串x。需要多少个x的独立副本才能高概率地重建x ?在此工作之前,由于Holenstein, Mitzenmacher, Panigrahy和Wieder(2008),最好的上界是exp(O(n1/2))。我们使用输出中单个比特的统计数据将这个边界改进为exp(O(n /3)),并表明这个边界在受限模型中是尖锐的,其中这是唯一使用的信息。我们的方法使用初等复分析,也可以处理插入。Anindya De、Ryan O'Donnell和Rocco Servedio分别独立并同时获得了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trace reconstruction with exp(O(n1/3)) samples
In the trace reconstruction problem, an unknown bit string x ∈ {0,1}n is observed through the deletion channel, which deletes each bit of x with some constant probability q, yielding a contracted string x. How many independent copies of x are needed to reconstruct x with high probability? Prior to this work, the best upper bound, due to Holenstein, Mitzenmacher, Panigrahy, and Wieder (2008), was exp(O(n1/2)). We improve this bound to exp(O(n1/3)) using statistics of individual bits in the output and show that this bound is sharp in the restricted model where this is the only information used. Our method, that uses elementary complex analysis, can also handle insertions. Similar results were obtained independently and simultaneously by Anindya De, Ryan O'Donnell and Rocco Servedio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信