{"title":"乙二胺四乙酸及其盐与碱金属和碱土金属非螯合构象的晶体结构特性分析","authors":"Daisuke Noguchi","doi":"10.33609/2708-129x.88.10.2022.55-69","DOIUrl":null,"url":null,"abstract":"In the present study, the crystal structures of non-chelating EDTA molecules and their non-chelation salts in a zwitterionic state, along with the EDTA-chelates of alkali and alkaline earth metals, were searched and overviewed. 25 non-chelating molecules of EDTA, and zwitterions of ethylenediammonium-diacetate diacetic acid HOOC-CH2-(-OOC-CH2-)NH+-CH2-CH2-NH+(-CH2-COO-)-CH2-COOH and their salts (ethylenediammonium-tetraacetic acid (HOOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COOH)2, ethylenediammonium-acetate triacetic acid (HOOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COO-)-CH2-COOH, and ethylenediammonium-tetraacetate (-OOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COO-)2 with counterions), as well as 17 types of EDTA-chelates of alkali metal ions (Li+, Na+, K+, Rb+) and alkaline earth metal ions (Mg2+, Ca2+, Sr2+, Ba2+) were analyzed using data from the Cambridge Crystallographic Data Center (CCDC). Each intramolecular contact distance between nitrogen and oxygen atoms (NH+···O) has been examined and found to be around 2.7 Å. Investigation on the distribution of the intramolecular NH+··· NH+-distances of EDTA and non-chelated salts thereof also revealed that bulky counterion and certain crystal solvent molecules correspond to change in crystal packing, and that they influenced the conformers of EDTA molecules among gauche form to anti form. In the existing crystalline EDTA-chelates of alkali metals as well as alkaline earth metals, various coordination numbers (CN) and the denticity (к) of EDTA anions are displayed; CN 5 to 9, and tri- and hexadentate fashions. Intramolecular contact N···O and N···N distances correspond to the metal ion radii except for the case of Sr-EDTA chelate, probably due to differences of crystal packings in addition to the number of counterions and crystal solvent molecules. The existing data on crystalline EDTA and its salts have been gathered herein, which contributes to a further understanding and exploring applications hereafter.","PeriodicalId":23394,"journal":{"name":"Ukrainian Chemistry Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALYSIS OF SPECIALTIES OF CRYSTAL STRUCTURE FOR NON-CHELATE CONFORMATIONS OF ETHYLENE-DIAMINETETRAACETIC ACID AND ITS SALTS WITH ALKALI AND ALKALINE EARTH METALS\",\"authors\":\"Daisuke Noguchi\",\"doi\":\"10.33609/2708-129x.88.10.2022.55-69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, the crystal structures of non-chelating EDTA molecules and their non-chelation salts in a zwitterionic state, along with the EDTA-chelates of alkali and alkaline earth metals, were searched and overviewed. 25 non-chelating molecules of EDTA, and zwitterions of ethylenediammonium-diacetate diacetic acid HOOC-CH2-(-OOC-CH2-)NH+-CH2-CH2-NH+(-CH2-COO-)-CH2-COOH and their salts (ethylenediammonium-tetraacetic acid (HOOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COOH)2, ethylenediammonium-acetate triacetic acid (HOOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COO-)-CH2-COOH, and ethylenediammonium-tetraacetate (-OOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COO-)2 with counterions), as well as 17 types of EDTA-chelates of alkali metal ions (Li+, Na+, K+, Rb+) and alkaline earth metal ions (Mg2+, Ca2+, Sr2+, Ba2+) were analyzed using data from the Cambridge Crystallographic Data Center (CCDC). Each intramolecular contact distance between nitrogen and oxygen atoms (NH+···O) has been examined and found to be around 2.7 Å. Investigation on the distribution of the intramolecular NH+··· NH+-distances of EDTA and non-chelated salts thereof also revealed that bulky counterion and certain crystal solvent molecules correspond to change in crystal packing, and that they influenced the conformers of EDTA molecules among gauche form to anti form. In the existing crystalline EDTA-chelates of alkali metals as well as alkaline earth metals, various coordination numbers (CN) and the denticity (к) of EDTA anions are displayed; CN 5 to 9, and tri- and hexadentate fashions. Intramolecular contact N···O and N···N distances correspond to the metal ion radii except for the case of Sr-EDTA chelate, probably due to differences of crystal packings in addition to the number of counterions and crystal solvent molecules. The existing data on crystalline EDTA and its salts have been gathered herein, which contributes to a further understanding and exploring applications hereafter.\",\"PeriodicalId\":23394,\"journal\":{\"name\":\"Ukrainian Chemistry Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ukrainian Chemistry Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33609/2708-129x.88.10.2022.55-69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Chemistry Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33609/2708-129x.88.10.2022.55-69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ANALYSIS OF SPECIALTIES OF CRYSTAL STRUCTURE FOR NON-CHELATE CONFORMATIONS OF ETHYLENE-DIAMINETETRAACETIC ACID AND ITS SALTS WITH ALKALI AND ALKALINE EARTH METALS
In the present study, the crystal structures of non-chelating EDTA molecules and their non-chelation salts in a zwitterionic state, along with the EDTA-chelates of alkali and alkaline earth metals, were searched and overviewed. 25 non-chelating molecules of EDTA, and zwitterions of ethylenediammonium-diacetate diacetic acid HOOC-CH2-(-OOC-CH2-)NH+-CH2-CH2-NH+(-CH2-COO-)-CH2-COOH and their salts (ethylenediammonium-tetraacetic acid (HOOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COOH)2, ethylenediammonium-acetate triacetic acid (HOOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COO-)-CH2-COOH, and ethylenediammonium-tetraacetate (-OOC-CH2-)2NH+-CH2-CH2-NH+(-CH2-COO-)2 with counterions), as well as 17 types of EDTA-chelates of alkali metal ions (Li+, Na+, K+, Rb+) and alkaline earth metal ions (Mg2+, Ca2+, Sr2+, Ba2+) were analyzed using data from the Cambridge Crystallographic Data Center (CCDC). Each intramolecular contact distance between nitrogen and oxygen atoms (NH+···O) has been examined and found to be around 2.7 Å. Investigation on the distribution of the intramolecular NH+··· NH+-distances of EDTA and non-chelated salts thereof also revealed that bulky counterion and certain crystal solvent molecules correspond to change in crystal packing, and that they influenced the conformers of EDTA molecules among gauche form to anti form. In the existing crystalline EDTA-chelates of alkali metals as well as alkaline earth metals, various coordination numbers (CN) and the denticity (к) of EDTA anions are displayed; CN 5 to 9, and tri- and hexadentate fashions. Intramolecular contact N···O and N···N distances correspond to the metal ion radii except for the case of Sr-EDTA chelate, probably due to differences of crystal packings in addition to the number of counterions and crystal solvent molecules. The existing data on crystalline EDTA and its salts have been gathered herein, which contributes to a further understanding and exploring applications hereafter.