基于CCA的特征选择及其在声学语音特征连续凹陷识别中的应用

Heysem Kaya, F. Eyben, A. A. Salah, Björn Schuller
{"title":"基于CCA的特征选择及其在声学语音特征连续凹陷识别中的应用","authors":"Heysem Kaya, F. Eyben, A. A. Salah, Björn Schuller","doi":"10.1109/ICASSP.2014.6854298","DOIUrl":null,"url":null,"abstract":"In this study we make use of Canonical Correlation Analysis (CCA) based feature selection for continuous depression recognition from speech. Besides its common use in multi-modal/multi-view feature extraction, CCA can be easily employed as a feature selector. We introduce several novel ways of CCA based filter (ranking) methods, showing their relations to previous work. We test the suitability of proposed methods on the AVEC 2013 dataset under the ACM MM 2013 Challenge protocol. Using 17% of features, we obtained a relative improvement of 30% on the challenge's test-set baseline Root Mean Square Error.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"13 1","pages":"3729-3733"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"CCA based feature selection with application to continuous depression recognition from acoustic speech features\",\"authors\":\"Heysem Kaya, F. Eyben, A. A. Salah, Björn Schuller\",\"doi\":\"10.1109/ICASSP.2014.6854298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we make use of Canonical Correlation Analysis (CCA) based feature selection for continuous depression recognition from speech. Besides its common use in multi-modal/multi-view feature extraction, CCA can be easily employed as a feature selector. We introduce several novel ways of CCA based filter (ranking) methods, showing their relations to previous work. We test the suitability of proposed methods on the AVEC 2013 dataset under the ACM MM 2013 Challenge protocol. Using 17% of features, we obtained a relative improvement of 30% on the challenge's test-set baseline Root Mean Square Error.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"13 1\",\"pages\":\"3729-3733\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6854298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

在这项研究中,我们利用典型相关分析(CCA)为基础的特征选择,从语音连续抑郁症识别。除了通常用于多模态/多视图特征提取之外,CCA还可以很容易地用作特征选择器。我们介绍了几种基于CCA的过滤(排序)方法的新方法,并说明了它们与以往工作的关系。在ACM MM 2013挑战协议下,我们在AVEC 2013数据集上测试了所提出方法的适用性。使用17%的特征,我们在挑战的测试集基线均方根误差上获得了30%的相对改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CCA based feature selection with application to continuous depression recognition from acoustic speech features
In this study we make use of Canonical Correlation Analysis (CCA) based feature selection for continuous depression recognition from speech. Besides its common use in multi-modal/multi-view feature extraction, CCA can be easily employed as a feature selector. We introduce several novel ways of CCA based filter (ranking) methods, showing their relations to previous work. We test the suitability of proposed methods on the AVEC 2013 dataset under the ACM MM 2013 Challenge protocol. Using 17% of features, we obtained a relative improvement of 30% on the challenge's test-set baseline Root Mean Square Error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信