{"title":"一类受电弓型方程解的存在唯一性","authors":"Muhammad Mohsin, A. Zaidi","doi":"10.1017/S144618112100002X","DOIUrl":null,"url":null,"abstract":"Abstract We show existence and uniqueness of solutions to an initial boundary value problem that entails a pantograph type functional partial differential equation with two advanced nonlocal terms. The problem models cell growth and division into two daughter cells of different sizes. There is a paucity of information about the solution to the problem for an arbitrary initial cell distribution.","PeriodicalId":74944,"journal":{"name":"The ANZIAM journal","volume":"52 1","pages":"489 - 512"},"PeriodicalIF":0.9000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A PANTOGRAPH TYPE EQUATION\",\"authors\":\"Muhammad Mohsin, A. Zaidi\",\"doi\":\"10.1017/S144618112100002X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We show existence and uniqueness of solutions to an initial boundary value problem that entails a pantograph type functional partial differential equation with two advanced nonlocal terms. The problem models cell growth and division into two daughter cells of different sizes. There is a paucity of information about the solution to the problem for an arbitrary initial cell distribution.\",\"PeriodicalId\":74944,\"journal\":{\"name\":\"The ANZIAM journal\",\"volume\":\"52 1\",\"pages\":\"489 - 512\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ANZIAM journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S144618112100002X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ANZIAM journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S144618112100002X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON EXISTENCE AND UNIQUENESS OF SOLUTIONS TO A PANTOGRAPH TYPE EQUATION
Abstract We show existence and uniqueness of solutions to an initial boundary value problem that entails a pantograph type functional partial differential equation with two advanced nonlocal terms. The problem models cell growth and division into two daughter cells of different sizes. There is a paucity of information about the solution to the problem for an arbitrary initial cell distribution.