Joseph Roger Arhin, Francis Sam, K. Coker, Toufic Seini
{"title":"低秩结构矩阵分解的加速精度增强随机奇异值分解","authors":"Joseph Roger Arhin, Francis Sam, K. Coker, Toufic Seini","doi":"10.11648/j.pamj.20200904.11","DOIUrl":null,"url":null,"abstract":"Big data has in recent years gained ground in many scientific and engineering problems. It seems to some extent prohibitive for traditional matrix decomposition methods (i.e. QR, SVD, EVD, etc.) to handle such large-scale problems involving data matrix. Many researchers have developed several algorithms to decompose such big data matrices. An accuracy-enhanced randomized singular value decomposition method (referred to as AE-RSVDM) with orthonormalization recently becomes the state-of-the-art to factorize large data matrices with satisfactory speed and accuracy. In our paper, low-rank matrix approximations based on randomization are studied, with emphasis on accelerating the computational efficiency on large data matrices. By this, we accelerate the AE-RSVDM with modified normalized power iteration to result in an accelerated version. The accelerated version is grounded on a two-stage scheme. The first stage seeks to find the range of a sketch matrix which involves a Gaussian random matrix. A low-dimensional space is then created from the high-dimensional data matrix via power iteration. Numerical experiments on matrices of different sizes demonstrate that our accelerated variant achieves speedups while attaining the same reconstruction error as the AE-RSVDM with orthonormalization. And with data from Google art project, we have made known the computational speed-up of the accelerated variant over the AE-RSVDM algorithm for decomposing large data matrices with low-rank form.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Accelerated Accuracy-enhanced Randomized Singular Value Decomposition for Factorizing Matrices with Low-rank Structure\",\"authors\":\"Joseph Roger Arhin, Francis Sam, K. Coker, Toufic Seini\",\"doi\":\"10.11648/j.pamj.20200904.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data has in recent years gained ground in many scientific and engineering problems. It seems to some extent prohibitive for traditional matrix decomposition methods (i.e. QR, SVD, EVD, etc.) to handle such large-scale problems involving data matrix. Many researchers have developed several algorithms to decompose such big data matrices. An accuracy-enhanced randomized singular value decomposition method (referred to as AE-RSVDM) with orthonormalization recently becomes the state-of-the-art to factorize large data matrices with satisfactory speed and accuracy. In our paper, low-rank matrix approximations based on randomization are studied, with emphasis on accelerating the computational efficiency on large data matrices. By this, we accelerate the AE-RSVDM with modified normalized power iteration to result in an accelerated version. The accelerated version is grounded on a two-stage scheme. The first stage seeks to find the range of a sketch matrix which involves a Gaussian random matrix. A low-dimensional space is then created from the high-dimensional data matrix via power iteration. Numerical experiments on matrices of different sizes demonstrate that our accelerated variant achieves speedups while attaining the same reconstruction error as the AE-RSVDM with orthonormalization. And with data from Google art project, we have made known the computational speed-up of the accelerated variant over the AE-RSVDM algorithm for decomposing large data matrices with low-rank form.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.pamj.20200904.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.pamj.20200904.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
An Accelerated Accuracy-enhanced Randomized Singular Value Decomposition for Factorizing Matrices with Low-rank Structure
Big data has in recent years gained ground in many scientific and engineering problems. It seems to some extent prohibitive for traditional matrix decomposition methods (i.e. QR, SVD, EVD, etc.) to handle such large-scale problems involving data matrix. Many researchers have developed several algorithms to decompose such big data matrices. An accuracy-enhanced randomized singular value decomposition method (referred to as AE-RSVDM) with orthonormalization recently becomes the state-of-the-art to factorize large data matrices with satisfactory speed and accuracy. In our paper, low-rank matrix approximations based on randomization are studied, with emphasis on accelerating the computational efficiency on large data matrices. By this, we accelerate the AE-RSVDM with modified normalized power iteration to result in an accelerated version. The accelerated version is grounded on a two-stage scheme. The first stage seeks to find the range of a sketch matrix which involves a Gaussian random matrix. A low-dimensional space is then created from the high-dimensional data matrix via power iteration. Numerical experiments on matrices of different sizes demonstrate that our accelerated variant achieves speedups while attaining the same reconstruction error as the AE-RSVDM with orthonormalization. And with data from Google art project, we have made known the computational speed-up of the accelerated variant over the AE-RSVDM algorithm for decomposing large data matrices with low-rank form.
期刊介绍:
The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.