使用不对称分布建模基因表达数据

Q4 Medicine
Walkiria Maria de Oliveira Macerau, L. Milan
{"title":"使用不对称分布建模基因表达数据","authors":"Walkiria Maria de Oliveira Macerau, L. Milan","doi":"10.28951/rbb.v39i2.466","DOIUrl":null,"url":null,"abstract":"We present a short review of the asymmetric distributions alpha-stable, skew normal, skew Student’s t and skew Laplace. We compare the performance for these distributions, in general, are used to model asymmetric data, using AIC and BIC. These criterias were able to selecting the best model for each data set. We also apply these models to gene expression data and we verify these distributions are qualified to model these  observations.","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"USING ASYMMETRIC DISTRIBUTIONS FOR MODELING GENE EXPRESSION DATA\",\"authors\":\"Walkiria Maria de Oliveira Macerau, L. Milan\",\"doi\":\"10.28951/rbb.v39i2.466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a short review of the asymmetric distributions alpha-stable, skew normal, skew Student’s t and skew Laplace. We compare the performance for these distributions, in general, are used to model asymmetric data, using AIC and BIC. These criterias were able to selecting the best model for each data set. We also apply these models to gene expression data and we verify these distributions are qualified to model these  observations.\",\"PeriodicalId\":36293,\"journal\":{\"name\":\"Revista Brasileira de Biometria\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Biometria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28951/rbb.v39i2.466\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/rbb.v39i2.466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

我们简要回顾了非对称分布的稳定性,偏正态分布,偏学生t分布和偏拉普拉斯分布。我们比较了这些分布的性能,通常使用AIC和BIC来建模非对称数据。这些准则能够为每个数据集选择最佳模型。我们还将这些模型应用于基因表达数据,并验证这些分布有资格模拟这些观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
USING ASYMMETRIC DISTRIBUTIONS FOR MODELING GENE EXPRESSION DATA
We present a short review of the asymmetric distributions alpha-stable, skew normal, skew Student’s t and skew Laplace. We compare the performance for these distributions, in general, are used to model asymmetric data, using AIC and BIC. These criterias were able to selecting the best model for each data set. We also apply these models to gene expression data and we verify these distributions are qualified to model these  observations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Biometria
Revista Brasileira de Biometria Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
自引率
0.00%
发文量
0
审稿时长
53 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信