E. Zanoni, G. Meneghesso, D. Buttari, M. Maretto, G. Massari
{"title":"mesfet和hemt新型击穿机制的脉冲测量和电路建模","authors":"E. Zanoni, G. Meneghesso, D. Buttari, M. Maretto, G. Massari","doi":"10.1109/RELPHY.2000.843922","DOIUrl":null,"url":null,"abstract":"We measured the on-state breakdown of HEMTs in a nondestructive way using the Transmission Line Pulse technique reaching very high values of gate current density (30 mA/mm). On the basis of the experimental observations, we developed a new model for on-state breakdown of HEMTs, suitable for SPICE simulations, which is capable of predicting the breakdown curves. We have shown that a parasitic bipolar action can give rise in HEMTs to a new form of breakdown, which is accurately modeled by the SPICE equivalent circuit. The model not only predicts I/sub G/, but consistently describes I/sub D/ up to breakdown levels.","PeriodicalId":6387,"journal":{"name":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","volume":"108 1","pages":"243-249"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pulsed measurements and circuit modeling of a new breakdown mechanism of MESFETs and HEMTs\",\"authors\":\"E. Zanoni, G. Meneghesso, D. Buttari, M. Maretto, G. Massari\",\"doi\":\"10.1109/RELPHY.2000.843922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We measured the on-state breakdown of HEMTs in a nondestructive way using the Transmission Line Pulse technique reaching very high values of gate current density (30 mA/mm). On the basis of the experimental observations, we developed a new model for on-state breakdown of HEMTs, suitable for SPICE simulations, which is capable of predicting the breakdown curves. We have shown that a parasitic bipolar action can give rise in HEMTs to a new form of breakdown, which is accurately modeled by the SPICE equivalent circuit. The model not only predicts I/sub G/, but consistently describes I/sub D/ up to breakdown levels.\",\"PeriodicalId\":6387,\"journal\":{\"name\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"volume\":\"108 1\",\"pages\":\"243-249\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.2000.843922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2000.843922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pulsed measurements and circuit modeling of a new breakdown mechanism of MESFETs and HEMTs
We measured the on-state breakdown of HEMTs in a nondestructive way using the Transmission Line Pulse technique reaching very high values of gate current density (30 mA/mm). On the basis of the experimental observations, we developed a new model for on-state breakdown of HEMTs, suitable for SPICE simulations, which is capable of predicting the breakdown curves. We have shown that a parasitic bipolar action can give rise in HEMTs to a new form of breakdown, which is accurately modeled by the SPICE equivalent circuit. The model not only predicts I/sub G/, but consistently describes I/sub D/ up to breakdown levels.