实值数据l1主成分的快速计算

S. Kundu, Panos P. Markopoulos, D. Pados
{"title":"实值数据l1主成分的快速计算","authors":"S. Kundu, Panos P. Markopoulos, D. Pados","doi":"10.1109/ICASSP.2014.6855164","DOIUrl":null,"url":null,"abstract":"Recently, Markopoulos et al. [1], [2] presented an optimal algorithm that computes the L1 maximum-projection principal component of any set of N real-valued data vectors of dimension D with complexity polynomial in N, O(ND). Still, moderate to high values of the data dimension D and/or data record size N may render the optimal algorithm unsuitable for practical implementation due to its exponential in D complexity. In this paper, we present for the first time in the literature a fast greedy single-bit-flipping conditionally optimal iterative algorithm for the computation of the L1 principal component with complexity O(N3). Detailed numerical studies are carried out demonstrating the effectiveness of the developed algorithm with applications to the general field of data dimensionality reduction and direction-of-arrival estimation.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"18 1","pages":"8028-8032"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Fast computation of the L1-principal component of real-valued data\",\"authors\":\"S. Kundu, Panos P. Markopoulos, D. Pados\",\"doi\":\"10.1109/ICASSP.2014.6855164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Markopoulos et al. [1], [2] presented an optimal algorithm that computes the L1 maximum-projection principal component of any set of N real-valued data vectors of dimension D with complexity polynomial in N, O(ND). Still, moderate to high values of the data dimension D and/or data record size N may render the optimal algorithm unsuitable for practical implementation due to its exponential in D complexity. In this paper, we present for the first time in the literature a fast greedy single-bit-flipping conditionally optimal iterative algorithm for the computation of the L1 principal component with complexity O(N3). Detailed numerical studies are carried out demonstrating the effectiveness of the developed algorithm with applications to the general field of data dimensionality reduction and direction-of-arrival estimation.\",\"PeriodicalId\":6545,\"journal\":{\"name\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"18 1\",\"pages\":\"8028-8032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2014.6855164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6855164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

最近,Markopoulos等[1],[2]提出了一种最优算法,计算任意N维的N个实值数据向量集的L1最大投影主成分,复杂度多项式为N, O(ND)。然而,数据维D和/或数据记录大小N的中高值可能会使最优算法不适合实际实现,因为它的D复杂度呈指数级增长。本文在文献中首次提出了一种快速贪婪单位翻转条件最优迭代算法,用于计算复杂度为O(N3)的L1主成分。详细的数值研究证明了所开发算法的有效性,并将其应用于数据降维和到达方向估计的一般领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast computation of the L1-principal component of real-valued data
Recently, Markopoulos et al. [1], [2] presented an optimal algorithm that computes the L1 maximum-projection principal component of any set of N real-valued data vectors of dimension D with complexity polynomial in N, O(ND). Still, moderate to high values of the data dimension D and/or data record size N may render the optimal algorithm unsuitable for practical implementation due to its exponential in D complexity. In this paper, we present for the first time in the literature a fast greedy single-bit-flipping conditionally optimal iterative algorithm for the computation of the L1 principal component with complexity O(N3). Detailed numerical studies are carried out demonstrating the effectiveness of the developed algorithm with applications to the general field of data dimensionality reduction and direction-of-arrival estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信