{"title":"具有三维弯曲-扭转耦合运动的内共振压电能量采集器的概念验证研究","authors":"Yimin Fan, M. Ghayesh, Tien-Fu Lu","doi":"10.1115/1.4055720","DOIUrl":null,"url":null,"abstract":"\n By exchanging the internal energy between coupled vibration modes, internal-resonance-based energy harvesters may provide an effective solution to broadening and enhancing bandwidth and power performance in dealing with natural vibration sources. With the development of piezoelectric-based transducers, thickness and face shear coefficients in proper piezoelectric elements can also generate the power output from shear deformation on the core vibrating elements. However, in most cantilever-based energy harvesters that focused on bending modes, the shear responses were neglected. In this paper, we present an internal-resonance-based piezoelectric energy harvester with three-dimensional coupled bending and torsional modes, for the first time. The fine-tuned system leverages a two-to-one internal resonance between its first torsion and second bending modes to enhance the power output with piezoelectric effects. The dynamic behaviour implies the coexistence of in-plane and out-of-plane motions under a single excitation frequency, and the corresponding strain changes in the bending and shear directions are captured by bonded piezoelectric transducers. Dependence between excitation levels and the internal-resonance phenomenon is justified as a critical system parameter study; the results also indicate that an intriguing non-periodic region exists near the centre frequency. The outcomes of this study feature a multi-directional and multi-modal energy harvester that displays rich dynamic behaviors. The operational bandwidth is promising for broadband energy harvesting, and the output voltage is enhanced by capturing both in-plane and out-of-plane motions at the same time.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"21 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A proof-of-concept study on an internal-resonance-based piezoelectric energy harvester with coupled three-dimensional bending-torsion motions\",\"authors\":\"Yimin Fan, M. Ghayesh, Tien-Fu Lu\",\"doi\":\"10.1115/1.4055720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n By exchanging the internal energy between coupled vibration modes, internal-resonance-based energy harvesters may provide an effective solution to broadening and enhancing bandwidth and power performance in dealing with natural vibration sources. With the development of piezoelectric-based transducers, thickness and face shear coefficients in proper piezoelectric elements can also generate the power output from shear deformation on the core vibrating elements. However, in most cantilever-based energy harvesters that focused on bending modes, the shear responses were neglected. In this paper, we present an internal-resonance-based piezoelectric energy harvester with three-dimensional coupled bending and torsional modes, for the first time. The fine-tuned system leverages a two-to-one internal resonance between its first torsion and second bending modes to enhance the power output with piezoelectric effects. The dynamic behaviour implies the coexistence of in-plane and out-of-plane motions under a single excitation frequency, and the corresponding strain changes in the bending and shear directions are captured by bonded piezoelectric transducers. Dependence between excitation levels and the internal-resonance phenomenon is justified as a critical system parameter study; the results also indicate that an intriguing non-periodic region exists near the centre frequency. The outcomes of this study feature a multi-directional and multi-modal energy harvester that displays rich dynamic behaviors. The operational bandwidth is promising for broadband energy harvesting, and the output voltage is enhanced by capturing both in-plane and out-of-plane motions at the same time.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055720\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055720","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
A proof-of-concept study on an internal-resonance-based piezoelectric energy harvester with coupled three-dimensional bending-torsion motions
By exchanging the internal energy between coupled vibration modes, internal-resonance-based energy harvesters may provide an effective solution to broadening and enhancing bandwidth and power performance in dealing with natural vibration sources. With the development of piezoelectric-based transducers, thickness and face shear coefficients in proper piezoelectric elements can also generate the power output from shear deformation on the core vibrating elements. However, in most cantilever-based energy harvesters that focused on bending modes, the shear responses were neglected. In this paper, we present an internal-resonance-based piezoelectric energy harvester with three-dimensional coupled bending and torsional modes, for the first time. The fine-tuned system leverages a two-to-one internal resonance between its first torsion and second bending modes to enhance the power output with piezoelectric effects. The dynamic behaviour implies the coexistence of in-plane and out-of-plane motions under a single excitation frequency, and the corresponding strain changes in the bending and shear directions are captured by bonded piezoelectric transducers. Dependence between excitation levels and the internal-resonance phenomenon is justified as a critical system parameter study; the results also indicate that an intriguing non-periodic region exists near the centre frequency. The outcomes of this study feature a multi-directional and multi-modal energy harvester that displays rich dynamic behaviors. The operational bandwidth is promising for broadband energy harvesting, and the output voltage is enhanced by capturing both in-plane and out-of-plane motions at the same time.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.