四维超混沌系统的线性和非线性反馈控制策略

IF 0.2 Q4 MATHEMATICS
Maysoon M. Aziz, S. Al-Azzawi
{"title":"四维超混沌系统的线性和非线性反馈控制策略","authors":"Maysoon M. Aziz, S. Al-Azzawi","doi":"10.11648/j.pamj.20170601.12","DOIUrl":null,"url":null,"abstract":"This paper investigates the stabilization of unstable equilibrium for a 4D hyperchaotic system. The linear, non-linear and speed feedback controls are used to suppress hyperchaos to this equilibrium. The Routh-Hurwitz theorem and Lyapunov's second methods are used to derive the conditions of the asymptotic stability of the controlled hyperchaotic system. Theoretical analysis, numerical simulation and illustrative examples are given to demonstrate the effectiveness of the proposed controllers.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Linear and Non-linear Feedback Control Strategies for a 4D Hyperchaotic System\",\"authors\":\"Maysoon M. Aziz, S. Al-Azzawi\",\"doi\":\"10.11648/j.pamj.20170601.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the stabilization of unstable equilibrium for a 4D hyperchaotic system. The linear, non-linear and speed feedback controls are used to suppress hyperchaos to this equilibrium. The Routh-Hurwitz theorem and Lyapunov's second methods are used to derive the conditions of the asymptotic stability of the controlled hyperchaotic system. Theoretical analysis, numerical simulation and illustrative examples are given to demonstrate the effectiveness of the proposed controllers.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2017-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.pamj.20170601.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.pamj.20170601.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

研究了一类四维超混沌系统的不稳定平衡的镇定性。采用线性、非线性和速度反馈控制将超混沌抑制到该平衡状态。利用Routh-Hurwitz定理和Lyapunov的第二方法推导了受控超混沌系统渐近稳定的条件。理论分析、数值仿真和算例验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear and Non-linear Feedback Control Strategies for a 4D Hyperchaotic System
This paper investigates the stabilization of unstable equilibrium for a 4D hyperchaotic system. The linear, non-linear and speed feedback controls are used to suppress hyperchaos to this equilibrium. The Routh-Hurwitz theorem and Lyapunov's second methods are used to derive the conditions of the asymptotic stability of the controlled hyperchaotic system. Theoretical analysis, numerical simulation and illustrative examples are given to demonstrate the effectiveness of the proposed controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信