奇特征有限域上的正交内积图

IF 0.7 Q2 MATHEMATICS
Shouxiang Zhao, Hengbin Zhang, J. Nan, Gaohua Tang
{"title":"奇特征有限域上的正交内积图","authors":"Shouxiang Zhao, Hengbin Zhang, J. Nan, Gaohua Tang","doi":"10.1155/2023/6811540","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">F</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> be a finite field of odd characteristic and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </math>\n </jats:inline-formula> be an integer with <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>δ</mi>\n <mo>=</mo>\n <mn>0,1</mn>\n </math>\n </jats:inline-formula>, or 2. The orthogonal inner product graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> over <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">F</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> is defined, and a class of subgroup of the automorphism groups of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is determined. We show that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is a disconnected graph if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>=</mo>\n <mn>2</mn>\n </math>\n </jats:inline-formula>; otherwise, it is not. Moreover, we give necessary and sufficient conditions for two vertices and two edges of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, respectively, which are in the same orbit under the action of a subgroup of the automorphism group of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"105 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal Inner Product Graphs over Finite Fields of Odd Characteristic\",\"authors\":\"Shouxiang Zhao, Hengbin Zhang, J. Nan, Gaohua Tang\",\"doi\":\"10.1155/2023/6811540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Let <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msub>\\n <mrow>\\n <mi mathvariant=\\\"double-struck\\\">F</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> be a finite field of odd characteristic and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </math>\\n </jats:inline-formula> be an integer with <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>δ</mi>\\n <mo>=</mo>\\n <mn>0,1</mn>\\n </math>\\n </jats:inline-formula>, or 2. The orthogonal inner product graph <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>O</mi>\\n <mi>i</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> over <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <msub>\\n <mrow>\\n <mi mathvariant=\\\"double-struck\\\">F</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> is defined, and a class of subgroup of the automorphism groups of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>O</mi>\\n <mi>i</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is determined. We show that <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>O</mi>\\n <mi>i</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is a disconnected graph if <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </math>\\n </jats:inline-formula>; otherwise, it is not. Moreover, we give necessary and sufficient conditions for two vertices and two edges of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mi>O</mi>\\n <mi>i</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, respectively, which are in the same orbit under the action of a subgroup of the automorphism group of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mi>O</mi>\\n <mi>i</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6811540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6811540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设F q为奇特征有限场,且2 ν + δ≥2为δ = 0、1或2的整数。正交内积图O i 2 ν + δ,q / fq是有定义的,并确定了O 2 ν + δ, q的自同构群的一类子群。我们发现O i 2 ν + δ,当2 ν + δ = 2时,Q为不连通图;否则,它不是。并给出了O i 2 ν + δ, q,分别在o2ν + δ自同构群的子群作用下处于同一轨道上,问 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal Inner Product Graphs over Finite Fields of Odd Characteristic
Let F q be a finite field of odd characteristic and 2 ν + δ 2 be an integer with δ = 0,1 , or 2. The orthogonal inner product graph O i 2 ν + δ , q over F q is defined, and a class of subgroup of the automorphism groups of O i 2 ν + δ , q is determined. We show that O i 2 ν + δ , q is a disconnected graph if 2 ν + δ = 2 ; otherwise, it is not. Moreover, we give necessary and sufficient conditions for two vertices and two edges of O i 2 ν + δ , q , respectively, which are in the same orbit under the action of a subgroup of the automorphism group of O i 2 ν + δ , q .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信