Shouxiang Zhao, Hengbin Zhang, J. Nan, Gaohua Tang
{"title":"奇特征有限域上的正交内积图","authors":"Shouxiang Zhao, Hengbin Zhang, J. Nan, Gaohua Tang","doi":"10.1155/2023/6811540","DOIUrl":null,"url":null,"abstract":"<jats:p>Let <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">F</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> be a finite field of odd characteristic and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </math>\n </jats:inline-formula> be an integer with <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>δ</mi>\n <mo>=</mo>\n <mn>0,1</mn>\n </math>\n </jats:inline-formula>, or 2. The orthogonal inner product graph <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> over <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <msub>\n <mrow>\n <mi mathvariant=\"double-struck\">F</mi>\n </mrow>\n <mrow>\n <mi>q</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> is defined, and a class of subgroup of the automorphism groups of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is determined. We show that <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> is a disconnected graph if <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>=</mo>\n <mn>2</mn>\n </math>\n </jats:inline-formula>; otherwise, it is not. Moreover, we give necessary and sufficient conditions for two vertices and two edges of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, respectively, which are in the same orbit under the action of a subgroup of the automorphism group of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mi>O</mi>\n <mi>i</mi>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mi>ν</mi>\n <mo>+</mo>\n <mi>δ</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"105 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal Inner Product Graphs over Finite Fields of Odd Characteristic\",\"authors\":\"Shouxiang Zhao, Hengbin Zhang, J. Nan, Gaohua Tang\",\"doi\":\"10.1155/2023/6811540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>Let <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msub>\\n <mrow>\\n <mi mathvariant=\\\"double-struck\\\">F</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> be a finite field of odd characteristic and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </math>\\n </jats:inline-formula> be an integer with <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>δ</mi>\\n <mo>=</mo>\\n <mn>0,1</mn>\\n </math>\\n </jats:inline-formula>, or 2. The orthogonal inner product graph <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>O</mi>\\n <mi>i</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> over <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <msub>\\n <mrow>\\n <mi mathvariant=\\\"double-struck\\\">F</mi>\\n </mrow>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula> is defined, and a class of subgroup of the automorphism groups of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>O</mi>\\n <mi>i</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is determined. We show that <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mi>O</mi>\\n <mi>i</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> is a disconnected graph if <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </math>\\n </jats:inline-formula>; otherwise, it is not. Moreover, we give necessary and sufficient conditions for two vertices and two edges of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mi>O</mi>\\n <mi>i</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, respectively, which are in the same orbit under the action of a subgroup of the automorphism group of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mi>O</mi>\\n <mi>i</mi>\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mi>ν</mi>\\n <mo>+</mo>\\n <mi>δ</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6811540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6811540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Orthogonal Inner Product Graphs over Finite Fields of Odd Characteristic
Let be a finite field of odd characteristic and be an integer with , or 2. The orthogonal inner product graph over is defined, and a class of subgroup of the automorphism groups of is determined. We show that is a disconnected graph if ; otherwise, it is not. Moreover, we give necessary and sufficient conditions for two vertices and two edges of , respectively, which are in the same orbit under the action of a subgroup of the automorphism group of .