{"title":"pH敏感超薄氧化物-液态金属体系:pH敏感性基本热力学极限的新概念","authors":"A. Das, Hong Tao Wang","doi":"10.2139/ssrn.3708520","DOIUrl":null,"url":null,"abstract":"A complex experiment was performed to unravel the simplest particle,Higgs Boson, and we performed a simple experiment to address a complex system. We tested the pH response of liquid metal EGaInSn in the form of a pendant drop and measured the sensitivity of 92.96 this http URL-1 in the pH range from 4 to 10. We derived a unified Nernst equation to explain high pH sensitivity and coincidentally rediscovered Marcel Pourbaix illuminating work on the pH-Potential Diagram. The surface potential in the sensor probe is originated from a spontaneous electrochemical reaction purely driven by thermodynamics, rendering to the lowest system energy possible. Our findings have a great scientific significance, which could redefine the conventional concept of the ion sensing mechanism in a solid-state electrochemical sensor.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"pH-Sensitive Ultra-Thin Oxide-Liquid Metal System: A New Concept of the Fundamental Thermodynamic Limit of pH Sensitivity\",\"authors\":\"A. Das, Hong Tao Wang\",\"doi\":\"10.2139/ssrn.3708520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A complex experiment was performed to unravel the simplest particle,Higgs Boson, and we performed a simple experiment to address a complex system. We tested the pH response of liquid metal EGaInSn in the form of a pendant drop and measured the sensitivity of 92.96 this http URL-1 in the pH range from 4 to 10. We derived a unified Nernst equation to explain high pH sensitivity and coincidentally rediscovered Marcel Pourbaix illuminating work on the pH-Potential Diagram. The surface potential in the sensor probe is originated from a spontaneous electrochemical reaction purely driven by thermodynamics, rendering to the lowest system energy possible. Our findings have a great scientific significance, which could redefine the conventional concept of the ion sensing mechanism in a solid-state electrochemical sensor.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3708520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3708520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
为了解开最简单的粒子希格斯玻色子,我们进行了一个复杂的实验,我们也进行了一个简单的实验来研究一个复杂的系统。我们测试了液态金属EGaInSn在悬垂液滴形式下的pH响应,在pH值4 ~ 10范围内测得灵敏度为92.96 this http URL-1。我们推导了一个统一的能斯特方程来解释高pH值敏感性,并巧合地重新发现了Marcel Pourbaix在pH-电位图上的启发性工作。传感器探头中的表面电位源于纯粹由热力学驱动的自发电化学反应,使系统能量尽可能低。我们的发现具有重要的科学意义,可以重新定义固态电化学传感器中离子传感机制的传统概念。
pH-Sensitive Ultra-Thin Oxide-Liquid Metal System: A New Concept of the Fundamental Thermodynamic Limit of pH Sensitivity
A complex experiment was performed to unravel the simplest particle,Higgs Boson, and we performed a simple experiment to address a complex system. We tested the pH response of liquid metal EGaInSn in the form of a pendant drop and measured the sensitivity of 92.96 this http URL-1 in the pH range from 4 to 10. We derived a unified Nernst equation to explain high pH sensitivity and coincidentally rediscovered Marcel Pourbaix illuminating work on the pH-Potential Diagram. The surface potential in the sensor probe is originated from a spontaneous electrochemical reaction purely driven by thermodynamics, rendering to the lowest system energy possible. Our findings have a great scientific significance, which could redefine the conventional concept of the ion sensing mechanism in a solid-state electrochemical sensor.