Ojochenemi Apen Daneil, O. Ochi, A. Adejumo, L. Hadiza, Ndaman Saidu Abubakar, J. Atehnkeng, Henry Adeyemi Rinde, C. SimeonMailafiya, Anthony Makun Hussaini
{"title":"尼日利亚北部高粱、小米和芝麻的真菌毒理学问题","authors":"Ojochenemi Apen Daneil, O. Ochi, A. Adejumo, L. Hadiza, Ndaman Saidu Abubakar, J. Atehnkeng, Henry Adeyemi Rinde, C. SimeonMailafiya, Anthony Makun Hussaini","doi":"10.4172/2155-9872.1000336","DOIUrl":null,"url":null,"abstract":"Incidence of fungi and aflatoxin in sorghum, millet, sesame and their products in Northern Nigeria was investigated in 146 food samples including; sorghum and traditional beer (50), millet and millet dough (50), and sesame seed (50). Members of the Aspergillus, Fusarium, Pennicilium, Macrophomena, Cercospora, Phoma, Rhizopus, Alternaria and Curvularia species in order of predominance were identified. Aflatoxin analysis showed 28.6% sorghum (0.96-21.74 μg/Kg), 80% burukutu (1.27-8.82 μg/Kg), 20% pito (0.69-2.00 μg/Kg), 29% millet grain (1.05-14.96 μg/Kg), 26.3% millet dough (0.81-3.78 μg/Kg) and 21.7% sesame (0.79-60.05 μg/Kg) samples were unsafe for consumption. Fungi and aflatoxin levels were higher in sesame than millet and sorghum. Fungal load in sesame seeds increased with latitude, aflatoxin levels in millet and sorghum varied with temperature and relative humidity. Beer processing reduced the levels of aflatoxin from sorghum grain to beer, establishing a 47% and 25% carryover respectively. Higher tannin levels in the samples correlated with lower fungal loads however, Aspergillus niger, Fusarium and Pennicilium showed resistance to tannin. Legislative, regulatory and stakeholder involvement is key in the continuous effort to reduce the mycotoxin menace.","PeriodicalId":14865,"journal":{"name":"Journal of analytical and bioanalytical techniques","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Mycotoxicological Concerns with Sorghum, Millet and Sesame in Northern Nigeria\",\"authors\":\"Ojochenemi Apen Daneil, O. Ochi, A. Adejumo, L. Hadiza, Ndaman Saidu Abubakar, J. Atehnkeng, Henry Adeyemi Rinde, C. SimeonMailafiya, Anthony Makun Hussaini\",\"doi\":\"10.4172/2155-9872.1000336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incidence of fungi and aflatoxin in sorghum, millet, sesame and their products in Northern Nigeria was investigated in 146 food samples including; sorghum and traditional beer (50), millet and millet dough (50), and sesame seed (50). Members of the Aspergillus, Fusarium, Pennicilium, Macrophomena, Cercospora, Phoma, Rhizopus, Alternaria and Curvularia species in order of predominance were identified. Aflatoxin analysis showed 28.6% sorghum (0.96-21.74 μg/Kg), 80% burukutu (1.27-8.82 μg/Kg), 20% pito (0.69-2.00 μg/Kg), 29% millet grain (1.05-14.96 μg/Kg), 26.3% millet dough (0.81-3.78 μg/Kg) and 21.7% sesame (0.79-60.05 μg/Kg) samples were unsafe for consumption. Fungi and aflatoxin levels were higher in sesame than millet and sorghum. Fungal load in sesame seeds increased with latitude, aflatoxin levels in millet and sorghum varied with temperature and relative humidity. Beer processing reduced the levels of aflatoxin from sorghum grain to beer, establishing a 47% and 25% carryover respectively. Higher tannin levels in the samples correlated with lower fungal loads however, Aspergillus niger, Fusarium and Pennicilium showed resistance to tannin. Legislative, regulatory and stakeholder involvement is key in the continuous effort to reduce the mycotoxin menace.\",\"PeriodicalId\":14865,\"journal\":{\"name\":\"Journal of analytical and bioanalytical techniques\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of analytical and bioanalytical techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-9872.1000336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical and bioanalytical techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9872.1000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mycotoxicological Concerns with Sorghum, Millet and Sesame in Northern Nigeria
Incidence of fungi and aflatoxin in sorghum, millet, sesame and their products in Northern Nigeria was investigated in 146 food samples including; sorghum and traditional beer (50), millet and millet dough (50), and sesame seed (50). Members of the Aspergillus, Fusarium, Pennicilium, Macrophomena, Cercospora, Phoma, Rhizopus, Alternaria and Curvularia species in order of predominance were identified. Aflatoxin analysis showed 28.6% sorghum (0.96-21.74 μg/Kg), 80% burukutu (1.27-8.82 μg/Kg), 20% pito (0.69-2.00 μg/Kg), 29% millet grain (1.05-14.96 μg/Kg), 26.3% millet dough (0.81-3.78 μg/Kg) and 21.7% sesame (0.79-60.05 μg/Kg) samples were unsafe for consumption. Fungi and aflatoxin levels were higher in sesame than millet and sorghum. Fungal load in sesame seeds increased with latitude, aflatoxin levels in millet and sorghum varied with temperature and relative humidity. Beer processing reduced the levels of aflatoxin from sorghum grain to beer, establishing a 47% and 25% carryover respectively. Higher tannin levels in the samples correlated with lower fungal loads however, Aspergillus niger, Fusarium and Pennicilium showed resistance to tannin. Legislative, regulatory and stakeholder involvement is key in the continuous effort to reduce the mycotoxin menace.