用弱等连续性描述距离

IF 1.1 3区 数学 Q1 MATHEMATICS
Jian Li, Y. Yang
{"title":"用弱等连续性描述距离","authors":"Jian Li, Y. Yang","doi":"10.3934/dcds.2023096","DOIUrl":null,"url":null,"abstract":"For an infinite discrete group $G$ acting on a compact metric space $X$, we introduce several weak versions of equicontinuity along subsets of $G$ and show that if a minimal system $(X,G)$ admits an invariant measure then $(X,G)$ is distal if and only if it is pairwise IP$^*$-equicontinuous; if the product system $(X\\times X,G)$ of a minimal system $(X,G)$ has a dense set of minimal points, then $(X,G)$ is distal if and only if it is pairwise IP$^*$-equicontinuous if and only if it is pairwise central$^*$-equicontinuous; if $(X,G)$ is a minimal system with $G$ being abelian, then $(X,G)$ is a system of order $\\infty$ if and only if it is pairwise FIP$^*$-equicontinuous.","PeriodicalId":51007,"journal":{"name":"Discrete and Continuous Dynamical Systems","volume":"16 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of distality via weak equicontinuity\",\"authors\":\"Jian Li, Y. Yang\",\"doi\":\"10.3934/dcds.2023096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an infinite discrete group $G$ acting on a compact metric space $X$, we introduce several weak versions of equicontinuity along subsets of $G$ and show that if a minimal system $(X,G)$ admits an invariant measure then $(X,G)$ is distal if and only if it is pairwise IP$^*$-equicontinuous; if the product system $(X\\\\times X,G)$ of a minimal system $(X,G)$ has a dense set of minimal points, then $(X,G)$ is distal if and only if it is pairwise IP$^*$-equicontinuous if and only if it is pairwise central$^*$-equicontinuous; if $(X,G)$ is a minimal system with $G$ being abelian, then $(X,G)$ is a system of order $\\\\infty$ if and only if it is pairwise FIP$^*$-equicontinuous.\",\"PeriodicalId\":51007,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/dcds.2023096\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcds.2023096","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于作用于紧度量空间$X$上的无限离散群$G$,我们引入了沿$G$子集的几个弱版本的等连续性,并证明了如果一个最小系统$(X,G)$允许一个不变测度,那么$(X,G)$是远端的当且仅当它是两两IP $^*$ -等连续的;如果一个极小系统$(X,G)$的积系统$(X\times X,G)$有一个密集的极小点集,则$(X,G)$是远端的当且仅当它是成对的IP $^*$ -等连续的当且仅当它是成对的中心$^*$ -等连续;如果$(X,G)$是一个最小系统,且$G$是阿贝尔的,则$(X,G)$是一个阶为$\infty$的系统,当且仅当它是成对FIP $^*$ -等连续的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of distality via weak equicontinuity
For an infinite discrete group $G$ acting on a compact metric space $X$, we introduce several weak versions of equicontinuity along subsets of $G$ and show that if a minimal system $(X,G)$ admits an invariant measure then $(X,G)$ is distal if and only if it is pairwise IP$^*$-equicontinuous; if the product system $(X\times X,G)$ of a minimal system $(X,G)$ has a dense set of minimal points, then $(X,G)$ is distal if and only if it is pairwise IP$^*$-equicontinuous if and only if it is pairwise central$^*$-equicontinuous; if $(X,G)$ is a minimal system with $G$ being abelian, then $(X,G)$ is a system of order $\infty$ if and only if it is pairwise FIP$^*$-equicontinuous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
175
审稿时长
6 months
期刊介绍: DCDS, series A includes peer-reviewed original papers and invited expository papers on the theory and methods of analysis, differential equations and dynamical systems. This journal is committed to recording important new results in its field and maintains the highest standards of innovation and quality. To be published in this journal, an original paper must be correct, new, nontrivial and of interest to a substantial number of readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信