基于深度神经网络的图像情感识别

Bo Li, ChengCheng Guo, Hui Ren
{"title":"基于深度神经网络的图像情感识别","authors":"Bo Li, ChengCheng Guo, Hui Ren","doi":"10.1109/IICSPI.2018.8690404","DOIUrl":null,"url":null,"abstract":"Images can convey rich semantics and induce various emotions to viewers. Several studies have been introduced recently that apply the deep learning technology to predict image emotion. In this paper, by extracting and combing the different levels of features, we build an emotion classification model based on feed forward deep neural network to classify image emotion. Experiments confirm the effectiveness of our network in predicting the emotion of images.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"36 1","pages":"561-564"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Image Emotion Recognition Based on Deep Neural Network\",\"authors\":\"Bo Li, ChengCheng Guo, Hui Ren\",\"doi\":\"10.1109/IICSPI.2018.8690404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images can convey rich semantics and induce various emotions to viewers. Several studies have been introduced recently that apply the deep learning technology to predict image emotion. In this paper, by extracting and combing the different levels of features, we build an emotion classification model based on feed forward deep neural network to classify image emotion. Experiments confirm the effectiveness of our network in predicting the emotion of images.\",\"PeriodicalId\":6673,\"journal\":{\"name\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"volume\":\"36 1\",\"pages\":\"561-564\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI.2018.8690404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图像可以传达丰富的语义,诱导观众产生各种情感。最近介绍了几项应用深度学习技术来预测图像情感的研究。本文通过对不同层次特征的提取和梳理,构建了基于前馈深度神经网络的情感分类模型,对图像情感进行分类。实验证实了我们的网络在预测图像情绪方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Emotion Recognition Based on Deep Neural Network
Images can convey rich semantics and induce various emotions to viewers. Several studies have been introduced recently that apply the deep learning technology to predict image emotion. In this paper, by extracting and combing the different levels of features, we build an emotion classification model based on feed forward deep neural network to classify image emotion. Experiments confirm the effectiveness of our network in predicting the emotion of images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信