代码漏洞识别的多视图预训练模型

Xuxia Jiang, Yinhao Xiao, Jun Wang, Wei Zhang
{"title":"代码漏洞识别的多视图预训练模型","authors":"Xuxia Jiang, Yinhao Xiao, Jun Wang, Wei Zhang","doi":"10.48550/arXiv.2208.05227","DOIUrl":null,"url":null,"abstract":". Vulnerability identification is crucial for cyber security in the software-related industry. Early identification methods require significant manual efforts in crafting features or annotating vulnerable code. Although the recent pre-trained models alleviate this issue, they over-look the multiple rich structural information contained in the code it-self. In this paper, we propose a novel Multi-View Pre-Trained Model (MV-PTM) that encodes both sequential and multi-type structural information of the source code and uses contrastive learning to enhance code representations. The experiments conducted on two public datasets demonstrate the superiority of MV-PTM. In particular, MV-PTM improves GraphCodeBERT by 3.36% on average in terms of F1 score.","PeriodicalId":89308,"journal":{"name":"WASA ... : International Conference on Wireless Algorithms, Systems, and Applications : proceedings. WASA","volume":"10 1","pages":"127-135"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-View Pre-Trained Model for Code Vulnerability Identification\",\"authors\":\"Xuxia Jiang, Yinhao Xiao, Jun Wang, Wei Zhang\",\"doi\":\"10.48550/arXiv.2208.05227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Vulnerability identification is crucial for cyber security in the software-related industry. Early identification methods require significant manual efforts in crafting features or annotating vulnerable code. Although the recent pre-trained models alleviate this issue, they over-look the multiple rich structural information contained in the code it-self. In this paper, we propose a novel Multi-View Pre-Trained Model (MV-PTM) that encodes both sequential and multi-type structural information of the source code and uses contrastive learning to enhance code representations. The experiments conducted on two public datasets demonstrate the superiority of MV-PTM. In particular, MV-PTM improves GraphCodeBERT by 3.36% on average in terms of F1 score.\",\"PeriodicalId\":89308,\"journal\":{\"name\":\"WASA ... : International Conference on Wireless Algorithms, Systems, and Applications : proceedings. WASA\",\"volume\":\"10 1\",\"pages\":\"127-135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WASA ... : International Conference on Wireless Algorithms, Systems, and Applications : proceedings. WASA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.05227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WASA ... : International Conference on Wireless Algorithms, Systems, and Applications : proceedings. WASA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.05227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 在软件相关行业中,漏洞识别对网络安全至关重要。早期的识别方法需要大量手工制作特性或注释易受攻击的代码。尽管最近的预训练模型缓解了这个问题,但它们忽略了代码本身中包含的多个丰富的结构信息。在本文中,我们提出了一种新的多视图预训练模型(MV-PTM),它对源代码的顺序和多类型结构信息进行编码,并使用对比学习来增强代码表示。在两个公共数据集上进行的实验证明了MV-PTM的优越性。特别是,MV-PTM在F1得分方面平均提高了GraphCodeBERT 3.36%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-View Pre-Trained Model for Code Vulnerability Identification
. Vulnerability identification is crucial for cyber security in the software-related industry. Early identification methods require significant manual efforts in crafting features or annotating vulnerable code. Although the recent pre-trained models alleviate this issue, they over-look the multiple rich structural information contained in the code it-self. In this paper, we propose a novel Multi-View Pre-Trained Model (MV-PTM) that encodes both sequential and multi-type structural information of the source code and uses contrastive learning to enhance code representations. The experiments conducted on two public datasets demonstrate the superiority of MV-PTM. In particular, MV-PTM improves GraphCodeBERT by 3.36% on average in terms of F1 score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信