基于运动意象的脑机接口深度递归时空神经网络

Wonjun Ko, Jee Seok Yoon, Eunsong Kang, E. Jun, Jun-Sik Choi, Heung-Il Suk
{"title":"基于运动意象的脑机接口深度递归时空神经网络","authors":"Wonjun Ko, Jee Seok Yoon, Eunsong Kang, E. Jun, Jun-Sik Choi, Heung-Il Suk","doi":"10.1109/IWW-BCI.2018.8311535","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel architecture of a deep neural network for EEG-based motor imagery classification. Unlike the existing deep neural networks in the literature, the proposed network allows us to analyze the learned network weights from a neurophysiological perspective, thus providing an insight into the underlying patterns inherent in motor imagery induced EEG signals. In order to validate the effectiveness of the proposed method, we conducted experiments on the BCI Competition IV-IIa dataset by comparing with the competing methods in terms of the Cohen's k value. For qualitative analysis, we also performed visual inspection of the activation patterns estimated from the learned network weights.","PeriodicalId":6537,"journal":{"name":"2018 6th International Conference on Brain-Computer Interface (BCI)","volume":"25 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Deep recurrent spatio-temporal neural network for motor imagery based BCI\",\"authors\":\"Wonjun Ko, Jee Seok Yoon, Eunsong Kang, E. Jun, Jun-Sik Choi, Heung-Il Suk\",\"doi\":\"10.1109/IWW-BCI.2018.8311535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel architecture of a deep neural network for EEG-based motor imagery classification. Unlike the existing deep neural networks in the literature, the proposed network allows us to analyze the learned network weights from a neurophysiological perspective, thus providing an insight into the underlying patterns inherent in motor imagery induced EEG signals. In order to validate the effectiveness of the proposed method, we conducted experiments on the BCI Competition IV-IIa dataset by comparing with the competing methods in terms of the Cohen's k value. For qualitative analysis, we also performed visual inspection of the activation patterns estimated from the learned network weights.\",\"PeriodicalId\":6537,\"journal\":{\"name\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"volume\":\"25 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 6th International Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2018.8311535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2018.8311535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在本文中,我们提出了一种新的基于脑电图的运动图像分类的深度神经网络架构。与文献中现有的深度神经网络不同,本文提出的网络允许我们从神经生理学的角度分析学习到的网络权重,从而深入了解运动图像诱发的脑电图信号的内在模式。为了验证所提出方法的有效性,我们在BCI Competition IV-IIa数据集上进行了实验,并在Cohen’s k值方面与竞争方法进行了比较。为了进行定性分析,我们还对从学习到的网络权重估计的激活模式进行了视觉检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep recurrent spatio-temporal neural network for motor imagery based BCI
In this paper, we propose a novel architecture of a deep neural network for EEG-based motor imagery classification. Unlike the existing deep neural networks in the literature, the proposed network allows us to analyze the learned network weights from a neurophysiological perspective, thus providing an insight into the underlying patterns inherent in motor imagery induced EEG signals. In order to validate the effectiveness of the proposed method, we conducted experiments on the BCI Competition IV-IIa dataset by comparing with the competing methods in terms of the Cohen's k value. For qualitative analysis, we also performed visual inspection of the activation patterns estimated from the learned network weights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信