核希尔伯特空间再现入门

J. Manton, P. Amblard
{"title":"核希尔伯特空间再现入门","authors":"J. Manton, P. Amblard","doi":"10.1561/2000000050","DOIUrl":null,"url":null,"abstract":"Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geometry, associating with each geometric configuration a canonical overdetermined coordinate system. This coordinate system varies continuously with changing geometric configurations, making it well-suited for studying problems whose solutions also vary continuously with changing geometry. This primer can also serve as an introduction to infinite-dimensional linear algebra because reproducing kernel Hilbert spaces have more properties in common with Euclidean spaces than do more general Hilbert spaces.","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"8 1","pages":"1-126"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"A Primer on Reproducing Kernel Hilbert Spaces\",\"authors\":\"J. Manton, P. Amblard\",\"doi\":\"10.1561/2000000050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geometry, associating with each geometric configuration a canonical overdetermined coordinate system. This coordinate system varies continuously with changing geometric configurations, making it well-suited for studying problems whose solutions also vary continuously with changing geometry. This primer can also serve as an introduction to infinite-dimensional linear algebra because reproducing kernel Hilbert spaces have more properties in common with Euclidean spaces than do more general Hilbert spaces.\",\"PeriodicalId\":12340,\"journal\":{\"name\":\"Found. Trends Signal Process.\",\"volume\":\"8 1\",\"pages\":\"1-126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Found. Trends Signal Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/2000000050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2000000050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

在不假设事先熟悉希尔伯特空间的情况下,阐明了再现核希尔伯特空间。与现有的教学材料相比,本书更加注重激发再现核希尔伯特空间的定义,并解释这些空间何时以及为何有效。新颖的观点是再现核希尔伯特空间理论研究的是外在几何,将每个几何构型与一个正则超定坐标系联系起来。该坐标系随几何构型的变化而连续变化,因此非常适合研究解也随几何构型的变化而连续变化的问题。这个入门也可以作为无限维线性代数的介绍,因为再现核希尔伯特空间比一般的希尔伯特空间与欧几里得空间有更多共同的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Primer on Reproducing Kernel Hilbert Spaces
Reproducing kernel Hilbert spaces are elucidated without assuming prior familiarity with Hilbert spaces. Compared with extant pedagogic material, greater care is placed on motivating the definition of reproducing kernel Hilbert spaces and explaining when and why these spaces are efficacious. The novel viewpoint is that reproducing kernel Hilbert space theory studies extrinsic geometry, associating with each geometric configuration a canonical overdetermined coordinate system. This coordinate system varies continuously with changing geometric configurations, making it well-suited for studying problems whose solutions also vary continuously with changing geometry. This primer can also serve as an introduction to infinite-dimensional linear algebra because reproducing kernel Hilbert spaces have more properties in common with Euclidean spaces than do more general Hilbert spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信