有限非abel单群的大小与对合大小的关系的Malinowska问题

Pub Date : 2021-01-25 DOI:10.5802/CRMATH.130
C. Anabanti
{"title":"有限非abel单群的大小与对合大小的关系的Malinowska问题","authors":"C. Anabanti","doi":"10.5802/CRMATH.130","DOIUrl":null,"url":null,"abstract":"Let In (G) denote the number of elements of order n in a finite group G . Malinowska recently asked “what is the smallest positive integer k such that whenever there exist two nonabelian finite simple groups S and G with prime divisors p1, · · · , pk of |G| and |S| satisfying 2 = p1 < ·· · < pk and Ipi (G) = Ipi (S) for all i ∈ {1, · · · , k}, we have that |G| = |S|?”. This paper resolves Malinowska’s question. 2020 Mathematics Subject Classification. 20D60,20D06. Funding. The author is supported by both TU Graz and partial funding from the Austrian Science Fund (FWF): P30934-N35, F05503, F05510. He is also at the University of Nigeria, Nsukka. Manuscript received 25th May 2020, revised 6th October 2020, accepted 7th October 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A question of Malinowska on sizes of finite nonabelian simple groups in relation to involution sizes\",\"authors\":\"C. Anabanti\",\"doi\":\"10.5802/CRMATH.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let In (G) denote the number of elements of order n in a finite group G . Malinowska recently asked “what is the smallest positive integer k such that whenever there exist two nonabelian finite simple groups S and G with prime divisors p1, · · · , pk of |G| and |S| satisfying 2 = p1 < ·· · < pk and Ipi (G) = Ipi (S) for all i ∈ {1, · · · , k}, we have that |G| = |S|?”. This paper resolves Malinowska’s question. 2020 Mathematics Subject Classification. 20D60,20D06. Funding. The author is supported by both TU Graz and partial funding from the Austrian Science Fund (FWF): P30934-N35, F05503, F05510. He is also at the University of Nigeria, Nsukka. Manuscript received 25th May 2020, revised 6th October 2020, accepted 7th October 2020.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMATH.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

令In (G)表示有限群G中n阶元素的个数。Malinowska最近问了一个问题:“当存在两个非阿贝尔有限简单群S和G,且|G|和|S|的素数因子p1,···,pk满足2 = p1 <···< pk且对于所有i∈{1,···,k},我们有|G| = |S|,那么最小的正整数k是什么?”本文解决了马林诺夫斯卡的问题。2020数学学科分类。20D60,20D06。资金。作者得到格拉茨工业大学和奥地利科学基金(FWF)的部分资助:P30934-N35, F05503, F05510。他还在尼日利亚恩苏卡大学工作。收稿2020年5月25日,改稿2020年10月6日,收稿2020年10月7日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A question of Malinowska on sizes of finite nonabelian simple groups in relation to involution sizes
Let In (G) denote the number of elements of order n in a finite group G . Malinowska recently asked “what is the smallest positive integer k such that whenever there exist two nonabelian finite simple groups S and G with prime divisors p1, · · · , pk of |G| and |S| satisfying 2 = p1 < ·· · < pk and Ipi (G) = Ipi (S) for all i ∈ {1, · · · , k}, we have that |G| = |S|?”. This paper resolves Malinowska’s question. 2020 Mathematics Subject Classification. 20D60,20D06. Funding. The author is supported by both TU Graz and partial funding from the Austrian Science Fund (FWF): P30934-N35, F05503, F05510. He is also at the University of Nigeria, Nsukka. Manuscript received 25th May 2020, revised 6th October 2020, accepted 7th October 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信