{"title":"损失严重程度的相位型专家混合回归","authors":"Martin Bladt, Jorge Yslas","doi":"10.1080/03461238.2022.2097019","DOIUrl":null,"url":null,"abstract":"ABSTRACT The task of modeling claim severities is addressed when data is not consistent with the classical regression assumptions. This framework is common in several lines of business within insurance and reinsurance, where catastrophic losses or heterogeneous sub-populations result in data difficult to model. Their correct analysis is required for pricing insurance products, and some of the most prevalent recent specifications in this direction are mixture-of-experts models. This paper proposes a regression model that generalizes the latter approach to the phase-type distribution setting. More specifically, the concept of mixing is extended to the case where an entire Markov jump process is unobserved and where states can communicate with each other. The covariates then act on the initial probabilities of such underlying chain, which play the role of expert weights. The basic properties of such a model are computed in terms of matrix functionals, and denseness properties are derived, demonstrating their flexibility. An effective estimation procedure is proposed, based on the EM algorithm and multinomial logistic regression, and subsequently illustrated using simulated and real-world datasets. The increased flexibility of the proposed models does not come at a high computational cost, and the motivation and interpretation are equally transparent to simpler MoE models.","PeriodicalId":49572,"journal":{"name":"Scandinavian Actuarial Journal","volume":"20 1","pages":"303 - 329"},"PeriodicalIF":1.6000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Phase-type mixture-of-experts regression for loss severities\",\"authors\":\"Martin Bladt, Jorge Yslas\",\"doi\":\"10.1080/03461238.2022.2097019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The task of modeling claim severities is addressed when data is not consistent with the classical regression assumptions. This framework is common in several lines of business within insurance and reinsurance, where catastrophic losses or heterogeneous sub-populations result in data difficult to model. Their correct analysis is required for pricing insurance products, and some of the most prevalent recent specifications in this direction are mixture-of-experts models. This paper proposes a regression model that generalizes the latter approach to the phase-type distribution setting. More specifically, the concept of mixing is extended to the case where an entire Markov jump process is unobserved and where states can communicate with each other. The covariates then act on the initial probabilities of such underlying chain, which play the role of expert weights. The basic properties of such a model are computed in terms of matrix functionals, and denseness properties are derived, demonstrating their flexibility. An effective estimation procedure is proposed, based on the EM algorithm and multinomial logistic regression, and subsequently illustrated using simulated and real-world datasets. The increased flexibility of the proposed models does not come at a high computational cost, and the motivation and interpretation are equally transparent to simpler MoE models.\",\"PeriodicalId\":49572,\"journal\":{\"name\":\"Scandinavian Actuarial Journal\",\"volume\":\"20 1\",\"pages\":\"303 - 329\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Actuarial Journal\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/03461238.2022.2097019\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Actuarial Journal","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/03461238.2022.2097019","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Phase-type mixture-of-experts regression for loss severities
ABSTRACT The task of modeling claim severities is addressed when data is not consistent with the classical regression assumptions. This framework is common in several lines of business within insurance and reinsurance, where catastrophic losses or heterogeneous sub-populations result in data difficult to model. Their correct analysis is required for pricing insurance products, and some of the most prevalent recent specifications in this direction are mixture-of-experts models. This paper proposes a regression model that generalizes the latter approach to the phase-type distribution setting. More specifically, the concept of mixing is extended to the case where an entire Markov jump process is unobserved and where states can communicate with each other. The covariates then act on the initial probabilities of such underlying chain, which play the role of expert weights. The basic properties of such a model are computed in terms of matrix functionals, and denseness properties are derived, demonstrating their flexibility. An effective estimation procedure is proposed, based on the EM algorithm and multinomial logistic regression, and subsequently illustrated using simulated and real-world datasets. The increased flexibility of the proposed models does not come at a high computational cost, and the motivation and interpretation are equally transparent to simpler MoE models.
期刊介绍:
Scandinavian Actuarial Journal is a journal for actuarial sciences that deals, in theory and application, with mathematical methods for insurance and related matters.
The bounds of actuarial mathematics are determined by the area of application rather than by uniformity of methods and techniques. Therefore, a paper of interest to Scandinavian Actuarial Journal may have its theoretical basis in probability theory, statistics, operations research, numerical analysis, computer science, demography, mathematical economics, or any other area of applied mathematics; the main criterion is that the paper should be of specific relevance to actuarial applications.