协处理器加速数据库中的鲁棒查询处理

S. Breß, Henning Funke, J. Teubner
{"title":"协处理器加速数据库中的鲁棒查询处理","authors":"S. Breß, Henning Funke, J. Teubner","doi":"10.1145/2882903.2882936","DOIUrl":null,"url":null,"abstract":"Technology limitations are making the use of heterogeneous computing devices much more than an academic curiosity. In fact, the use of such devices is widely acknowledged to be the only promising way to achieve application-speedups that users urgently need and expect. However, building a robust and efficient query engine for heterogeneous co-processor environments is still a significant challenge. In this paper, we identify two effects that limit performance in case co-processor resources become scarce. Cache thrashing occurs when the working set of queries does not fit into the co-processor's data cache, resulting in performance degradations up to a factor of 24. Heap contention occurs when multiple operators run in parallel on a co-processor and when their accumulated memory footprint exceeds the main memory capacity of the co-processor, slowing down query execution by up to a factor of six. We propose solutions for both effects. Data-driven operator placement avoids data movements when they might be harmful; query chopping limits co-processor memory usage and thus avoids contention. The combined approach-data-driven query chopping-achieves robust and scalable performance on co-processors. We validate our proposal with our open-source GPU-accelerated database engine CoGaDB and the popular star schema and TPC-H benchmarks.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Robust Query Processing in Co-Processor-accelerated Databases\",\"authors\":\"S. Breß, Henning Funke, J. Teubner\",\"doi\":\"10.1145/2882903.2882936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Technology limitations are making the use of heterogeneous computing devices much more than an academic curiosity. In fact, the use of such devices is widely acknowledged to be the only promising way to achieve application-speedups that users urgently need and expect. However, building a robust and efficient query engine for heterogeneous co-processor environments is still a significant challenge. In this paper, we identify two effects that limit performance in case co-processor resources become scarce. Cache thrashing occurs when the working set of queries does not fit into the co-processor's data cache, resulting in performance degradations up to a factor of 24. Heap contention occurs when multiple operators run in parallel on a co-processor and when their accumulated memory footprint exceeds the main memory capacity of the co-processor, slowing down query execution by up to a factor of six. We propose solutions for both effects. Data-driven operator placement avoids data movements when they might be harmful; query chopping limits co-processor memory usage and thus avoids contention. The combined approach-data-driven query chopping-achieves robust and scalable performance on co-processors. We validate our proposal with our open-source GPU-accelerated database engine CoGaDB and the popular star schema and TPC-H benchmarks.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2882936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2882936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

技术限制使得异构计算设备的使用不仅仅是学术上的好奇心。事实上,使用这种设备被广泛认为是实现用户迫切需要和期望的应用程序加速的唯一有希望的方法。然而,为异构协处理器环境构建一个健壮而高效的查询引擎仍然是一个重大挑战。在本文中,我们确定了在协处理器资源稀缺的情况下限制性能的两种影响。当查询的工作集不适合协处理器的数据缓存时,就会出现缓存抖动,导致性能下降高达24倍。当多个操作符在协处理器上并行运行时,当它们累积的内存占用超过协处理器的主内存容量时,就会发生堆争用,从而使查询执行速度减慢多达六倍。我们针对这两种影响提出解决方案。数据驱动的操作符位置避免了可能有害的数据移动;查询截断限制了协处理器内存的使用,从而避免了争用。这种组合方法——数据驱动的查询切分——在协处理器上实现了健壮和可扩展的性能。我们用开源gpu加速数据库引擎CoGaDB、流行的星型模式和TPC-H基准测试来验证我们的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Query Processing in Co-Processor-accelerated Databases
Technology limitations are making the use of heterogeneous computing devices much more than an academic curiosity. In fact, the use of such devices is widely acknowledged to be the only promising way to achieve application-speedups that users urgently need and expect. However, building a robust and efficient query engine for heterogeneous co-processor environments is still a significant challenge. In this paper, we identify two effects that limit performance in case co-processor resources become scarce. Cache thrashing occurs when the working set of queries does not fit into the co-processor's data cache, resulting in performance degradations up to a factor of 24. Heap contention occurs when multiple operators run in parallel on a co-processor and when their accumulated memory footprint exceeds the main memory capacity of the co-processor, slowing down query execution by up to a factor of six. We propose solutions for both effects. Data-driven operator placement avoids data movements when they might be harmful; query chopping limits co-processor memory usage and thus avoids contention. The combined approach-data-driven query chopping-achieves robust and scalable performance on co-processors. We validate our proposal with our open-source GPU-accelerated database engine CoGaDB and the popular star schema and TPC-H benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信