算法排序器多因子敏感性分析的人在环工作流

Jun Yuan, Aritra Dasgupta
{"title":"算法排序器多因子敏感性分析的人在环工作流","authors":"Jun Yuan, Aritra Dasgupta","doi":"10.1145/3597465.3605221","DOIUrl":null,"url":null,"abstract":"Algorithmic rankers are ubiquitously applied in automated decision systems such as hiring, admission, and loan-approval systems. Without appropriate explanations, decision-makers often cannot audit or trust algorithmic rankers' outcomes. In recent years, XAI (explainable AI) methods have focused on classification models, but there for algorithmic rankers, we are yet to develop state-of-the-art explanation methods. Moreover, explanations are also sensitive to changes in data and ranker properties, and decision-makers need transparent model diagnostics for calibrating the degree and impact of ranker sensitivity. To fulfill these needs, we take a dual approach of: i) designing explanations by transforming Shapley values for the simple form of a ranker based on linear weighted summation and ii) designing a human-in-the-loop sensitivity analysis workflow by simulating data whose attributes follow user-specified statistical distributions and correlations. We leverage a visualization interface to validate the transformed Shapley values and draw inferences from them by leveraging multi-factorial simulations, including data distributions, ranker parameters, and rank ranges.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Human-in-the-loop Workflow for Multi-Factorial Sensitivity Analysis of Algorithmic Rankers\",\"authors\":\"Jun Yuan, Aritra Dasgupta\",\"doi\":\"10.1145/3597465.3605221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithmic rankers are ubiquitously applied in automated decision systems such as hiring, admission, and loan-approval systems. Without appropriate explanations, decision-makers often cannot audit or trust algorithmic rankers' outcomes. In recent years, XAI (explainable AI) methods have focused on classification models, but there for algorithmic rankers, we are yet to develop state-of-the-art explanation methods. Moreover, explanations are also sensitive to changes in data and ranker properties, and decision-makers need transparent model diagnostics for calibrating the degree and impact of ranker sensitivity. To fulfill these needs, we take a dual approach of: i) designing explanations by transforming Shapley values for the simple form of a ranker based on linear weighted summation and ii) designing a human-in-the-loop sensitivity analysis workflow by simulating data whose attributes follow user-specified statistical distributions and correlations. We leverage a visualization interface to validate the transformed Shapley values and draw inferences from them by leveraging multi-factorial simulations, including data distributions, ranker parameters, and rank ranges.\",\"PeriodicalId\":92279,\"journal\":{\"name\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3597465.3605221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597465.3605221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

算法排名普遍应用于自动化决策系统,如招聘、录取和贷款审批系统。如果没有适当的解释,决策者往往无法审核或信任算法排名者的结果。近年来,XAI(可解释的AI)方法专注于分类模型,但对于算法排名器,我们尚未开发出最先进的解释方法。此外,解释对数据和排名属性的变化也很敏感,决策者需要透明的模型诊断来校准排名敏感性的程度和影响。为了满足这些需求,我们采用了双重方法:i)通过将Shapley值转换为基于线性加权求和的简单排名形式来设计解释;ii)通过模拟属性遵循用户指定的统计分布和相关性的数据来设计人在环敏感性分析工作流。我们利用可视化界面来验证转换后的Shapley值,并通过利用多因素模拟(包括数据分布、排名参数和排名范围)从中得出推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Human-in-the-loop Workflow for Multi-Factorial Sensitivity Analysis of Algorithmic Rankers
Algorithmic rankers are ubiquitously applied in automated decision systems such as hiring, admission, and loan-approval systems. Without appropriate explanations, decision-makers often cannot audit or trust algorithmic rankers' outcomes. In recent years, XAI (explainable AI) methods have focused on classification models, but there for algorithmic rankers, we are yet to develop state-of-the-art explanation methods. Moreover, explanations are also sensitive to changes in data and ranker properties, and decision-makers need transparent model diagnostics for calibrating the degree and impact of ranker sensitivity. To fulfill these needs, we take a dual approach of: i) designing explanations by transforming Shapley values for the simple form of a ranker based on linear weighted summation and ii) designing a human-in-the-loop sensitivity analysis workflow by simulating data whose attributes follow user-specified statistical distributions and correlations. We leverage a visualization interface to validate the transformed Shapley values and draw inferences from them by leveraging multi-factorial simulations, including data distributions, ranker parameters, and rank ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信