具有强凸损失的核正则化成对学习的误差分析

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
Shuhua Wang, B. Sheng
{"title":"具有强凸损失的核正则化成对学习的误差分析","authors":"Shuhua Wang, B. Sheng","doi":"10.3934/mfc.2022030","DOIUrl":null,"url":null,"abstract":"This paper presents a detailed performance analysis for the kernel-based regularized pairwise learning model associated with a strongly convex loss. The robustness for the model is analyzed by applying an improved convex analysis method. The results show that the regularized pairwise learning model has better qualitatively robustness according to the probability measure. Some new comparison inequalities are provided, with which the convergence rates are derived. In particular an explicit learning rate is obtained in case that the loss is the least square loss.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"18 1","pages":"625-650"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Error analysis of kernel regularized pairwise learning with a strongly convex loss\",\"authors\":\"Shuhua Wang, B. Sheng\",\"doi\":\"10.3934/mfc.2022030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a detailed performance analysis for the kernel-based regularized pairwise learning model associated with a strongly convex loss. The robustness for the model is analyzed by applying an improved convex analysis method. The results show that the regularized pairwise learning model has better qualitatively robustness according to the probability measure. Some new comparison inequalities are provided, with which the convergence rates are derived. In particular an explicit learning rate is obtained in case that the loss is the least square loss.\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":\"18 1\",\"pages\":\"625-650\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2022030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

摘要

本文详细分析了带有强凸损失的基于核的正则化成对学习模型的性能。采用改进的凸分析方法对模型进行鲁棒性分析。结果表明,基于概率度量的正则化两两学习模型具有较好的定性鲁棒性。给出了一些新的比较不等式,并由此导出了收敛速度。特别地,在损失为最小二乘损失的情况下,得到了显式学习率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error analysis of kernel regularized pairwise learning with a strongly convex loss
This paper presents a detailed performance analysis for the kernel-based regularized pairwise learning model associated with a strongly convex loss. The robustness for the model is analyzed by applying an improved convex analysis method. The results show that the regularized pairwise learning model has better qualitatively robustness according to the probability measure. Some new comparison inequalities are provided, with which the convergence rates are derived. In particular an explicit learning rate is obtained in case that the loss is the least square loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信