李代数$U_1$在特征2上的$\mathbb{Z}$ -阶恒等式

IF 0.6 3区 数学 Q3 MATHEMATICS
Claudemir Fidelis, P. Koshlukov
{"title":"李代数$U_1$在特征2上的$\\mathbb{Z}$ -阶恒等式","authors":"Claudemir Fidelis, P. Koshlukov","doi":"10.1017/S0305004122000123","DOIUrl":null,"url":null,"abstract":"Abstract Let K be any field of characteristic two and let \n$U_1$\n and \n$W_1$\n be the Lie algebras of the derivations of the algebra of Laurent polynomials \n$K[t,t^{-1}]$\n and of the polynomial ring K[t], respectively. The algebras \n$U_1$\n and \n$W_1$\n are equipped with natural \n$\\mathbb{Z}$\n -gradings. In this paper, we provide bases for the graded identities of \n$U_1$\n and \n$W_1$\n , and we prove that they do not admit any finite basis.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"9 1","pages":"49 - 58"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"$\\\\mathbb{Z}$\\n -graded identities of the Lie algebras \\n$U_1$\\n in characteristic 2\",\"authors\":\"Claudemir Fidelis, P. Koshlukov\",\"doi\":\"10.1017/S0305004122000123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let K be any field of characteristic two and let \\n$U_1$\\n and \\n$W_1$\\n be the Lie algebras of the derivations of the algebra of Laurent polynomials \\n$K[t,t^{-1}]$\\n and of the polynomial ring K[t], respectively. The algebras \\n$U_1$\\n and \\n$W_1$\\n are equipped with natural \\n$\\\\mathbb{Z}$\\n -gradings. In this paper, we provide bases for the graded identities of \\n$U_1$\\n and \\n$W_1$\\n , and we prove that they do not admit any finite basis.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"9 1\",\"pages\":\"49 - 58\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004122000123\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004122000123","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要:设K为特征二的任意域,设$U_1$和$W_1$分别为洛朗多项式$K[t,t^{-1}]$和多项式环K[t] $的导数的李代数。代数$U_1$和$W_1$具有自然的$\mathbb{Z}$ -分级。本文给出了$U_1$和$W_1$的梯度恒等式的基,并证明了它们不存在任何有限基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$\mathbb{Z}$ -graded identities of the Lie algebras $U_1$ in characteristic 2
Abstract Let K be any field of characteristic two and let $U_1$ and $W_1$ be the Lie algebras of the derivations of the algebra of Laurent polynomials $K[t,t^{-1}]$ and of the polynomial ring K[t], respectively. The algebras $U_1$ and $W_1$ are equipped with natural $\mathbb{Z}$ -gradings. In this paper, we provide bases for the graded identities of $U_1$ and $W_1$ , and we prove that they do not admit any finite basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信