{"title":"李代数$U_1$在特征2上的$\\mathbb{Z}$ -阶恒等式","authors":"Claudemir Fidelis, P. Koshlukov","doi":"10.1017/S0305004122000123","DOIUrl":null,"url":null,"abstract":"Abstract Let K be any field of characteristic two and let \n$U_1$\n and \n$W_1$\n be the Lie algebras of the derivations of the algebra of Laurent polynomials \n$K[t,t^{-1}]$\n and of the polynomial ring K[t], respectively. The algebras \n$U_1$\n and \n$W_1$\n are equipped with natural \n$\\mathbb{Z}$\n -gradings. In this paper, we provide bases for the graded identities of \n$U_1$\n and \n$W_1$\n , and we prove that they do not admit any finite basis.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"9 1","pages":"49 - 58"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"$\\\\mathbb{Z}$\\n -graded identities of the Lie algebras \\n$U_1$\\n in characteristic 2\",\"authors\":\"Claudemir Fidelis, P. Koshlukov\",\"doi\":\"10.1017/S0305004122000123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let K be any field of characteristic two and let \\n$U_1$\\n and \\n$W_1$\\n be the Lie algebras of the derivations of the algebra of Laurent polynomials \\n$K[t,t^{-1}]$\\n and of the polynomial ring K[t], respectively. The algebras \\n$U_1$\\n and \\n$W_1$\\n are equipped with natural \\n$\\\\mathbb{Z}$\\n -gradings. In this paper, we provide bases for the graded identities of \\n$U_1$\\n and \\n$W_1$\\n , and we prove that they do not admit any finite basis.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"9 1\",\"pages\":\"49 - 58\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004122000123\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004122000123","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
$\mathbb{Z}$
-graded identities of the Lie algebras
$U_1$
in characteristic 2
Abstract Let K be any field of characteristic two and let
$U_1$
and
$W_1$
be the Lie algebras of the derivations of the algebra of Laurent polynomials
$K[t,t^{-1}]$
and of the polynomial ring K[t], respectively. The algebras
$U_1$
and
$W_1$
are equipped with natural
$\mathbb{Z}$
-gradings. In this paper, we provide bases for the graded identities of
$U_1$
and
$W_1$
, and we prove that they do not admit any finite basis.
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.