{"title":"一元homh - hopf代数的等价交叉积","authors":"Zhong-wei Wang, Liangyun Zhang, Huihui Zheng","doi":"10.3336/gm.54.2.05","DOIUrl":null,"url":null,"abstract":"In this paper, we give a Maschke-type theorem for a Hom-crossed product on a finite dimensional monoidal Hom-Hopf algebra, and investigate a sufficient and necessary condition for two Hom-crossed products to be equivalent. Furthermore, we construct an equivalent Homcrossed system based on a same Hom-crossed product by using lazy Hom2-cocyle.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivalent crossed products of monoidal Hom-Hopf algebras\",\"authors\":\"Zhong-wei Wang, Liangyun Zhang, Huihui Zheng\",\"doi\":\"10.3336/gm.54.2.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we give a Maschke-type theorem for a Hom-crossed product on a finite dimensional monoidal Hom-Hopf algebra, and investigate a sufficient and necessary condition for two Hom-crossed products to be equivalent. Furthermore, we construct an equivalent Homcrossed system based on a same Hom-crossed product by using lazy Hom2-cocyle.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.54.2.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.54.2.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Equivalent crossed products of monoidal Hom-Hopf algebras
In this paper, we give a Maschke-type theorem for a Hom-crossed product on a finite dimensional monoidal Hom-Hopf algebra, and investigate a sufficient and necessary condition for two Hom-crossed products to be equivalent. Furthermore, we construct an equivalent Homcrossed system based on a same Hom-crossed product by using lazy Hom2-cocyle.