{"title":"自相关序列数据的实时统计过程控制:仿真方法","authors":"Artur M. F. Graxinha, J. M. D. Dias Pereira","doi":"10.47839/ijc.22.2.3081","DOIUrl":null,"url":null,"abstract":"Computer measurement systems play an important role on process automation and Industry 4.0 implementation strategies. They can be easily integrated on modern production systems, enabling real time test and control of multiple product and process characteristics that need to be monitored. If for one side the big data provided by these systems is an important asset for production analytics and optimization, on the other hand, the high frequency data sampling, commonly used in these systems, can lead to autocorrelated data violating, this way, statistical independence requirements for statistical process control implementation. In this paper we present a simulation model, using digital recursive filters, to properly handle and deal with these issues. The model demonstrates how to eliminate the autocorrelation from data time series, creating and ensuring the conditions for statistical process control application through the application of real time control charts. A performance comparison between Shewhart of Residuals and Exponentially Weighted Moving Average (EWMA) of Individual Observations control charts is made for autocorrelated data time series with the presence of different mean shift amplitude perturbations.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real Time Statistical Process Control for Autocorrelated Serial Data: A Simulation Approach\",\"authors\":\"Artur M. F. Graxinha, J. M. D. Dias Pereira\",\"doi\":\"10.47839/ijc.22.2.3081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer measurement systems play an important role on process automation and Industry 4.0 implementation strategies. They can be easily integrated on modern production systems, enabling real time test and control of multiple product and process characteristics that need to be monitored. If for one side the big data provided by these systems is an important asset for production analytics and optimization, on the other hand, the high frequency data sampling, commonly used in these systems, can lead to autocorrelated data violating, this way, statistical independence requirements for statistical process control implementation. In this paper we present a simulation model, using digital recursive filters, to properly handle and deal with these issues. The model demonstrates how to eliminate the autocorrelation from data time series, creating and ensuring the conditions for statistical process control application through the application of real time control charts. A performance comparison between Shewhart of Residuals and Exponentially Weighted Moving Average (EWMA) of Individual Observations control charts is made for autocorrelated data time series with the presence of different mean shift amplitude perturbations.\",\"PeriodicalId\":37669,\"journal\":{\"name\":\"International Journal of Computing\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47839/ijc.22.2.3081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.22.2.3081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Real Time Statistical Process Control for Autocorrelated Serial Data: A Simulation Approach
Computer measurement systems play an important role on process automation and Industry 4.0 implementation strategies. They can be easily integrated on modern production systems, enabling real time test and control of multiple product and process characteristics that need to be monitored. If for one side the big data provided by these systems is an important asset for production analytics and optimization, on the other hand, the high frequency data sampling, commonly used in these systems, can lead to autocorrelated data violating, this way, statistical independence requirements for statistical process control implementation. In this paper we present a simulation model, using digital recursive filters, to properly handle and deal with these issues. The model demonstrates how to eliminate the autocorrelation from data time series, creating and ensuring the conditions for statistical process control application through the application of real time control charts. A performance comparison between Shewhart of Residuals and Exponentially Weighted Moving Average (EWMA) of Individual Observations control charts is made for autocorrelated data time series with the presence of different mean shift amplitude perturbations.
期刊介绍:
The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.