原料混合料与焙烧对玉米壳和木屑废弃物成煤特性的协同效应

Q3 Environmental Science
M. A. Waheed, O. A. Akogun
{"title":"原料混合料与焙烧对玉米壳和木屑废弃物成煤特性的协同效应","authors":"M. A. Waheed, O. A. Akogun","doi":"10.35762/aer.2021.43.3.8","DOIUrl":null,"url":null,"abstract":"Agricultural waste management through energy recovery is one of the critical options that could drive the clean energy production industry and properly replace the use of coal in Nigeria if done sustainably. The objective of this work therefore is to study the synergetic effect of waste feedstock mixture and torrefaction pre-treatment on some physical and performance characteristics of briquettes from cornhusk (CH) and sawdust (SD) wastes. In this work, CH and SD wastes were processed raw and torrefied at 200 to 300 °C and were mixed in the ratios between 90/10 and 10/90 for briquette production using D-optimal crossed design. Cassava starch of 20 g to 100 g of the feedstock (w/w) was used as binder. The performance characteristics of CH/SD briquettes were evaluated using standard procedures while the generated data were processed using ANOVA, regression and pareto analysis. The thermal efficiency of 29.94% and water boiling time of 12 min were obtained for CH/SD briquette blend of ratio 10/90 torrefied at 300 °C. The maximum density and water resistance index of the torrefied briquettes at different blends respectively increased between 5.78–9.77% and 75.70–85.45% over those of the raw briquettes due to torrefaction and water preconditioning. Furthermore, the lowest value of burning rate was obtained for briquettes torrefied at 300 °C at 50/50 (CH/SD) ratio. ANOVA revealed that torrefaction and feedstock blending significantly influenced the characteristics of CH/SD briquette at p<0.05. This study showed the potential use of torrefied briquettes from cornhusk and sawdust wastes as alternative for coal and forest wood and a new source of energy for heating applications.","PeriodicalId":36747,"journal":{"name":"Applied Environmental Research","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synergetic Effects of Feedstock Mixture and Torrefaction on Some Briquette Characteristics of Cornhusk and Sawdust Wastes\",\"authors\":\"M. A. Waheed, O. A. Akogun\",\"doi\":\"10.35762/aer.2021.43.3.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agricultural waste management through energy recovery is one of the critical options that could drive the clean energy production industry and properly replace the use of coal in Nigeria if done sustainably. The objective of this work therefore is to study the synergetic effect of waste feedstock mixture and torrefaction pre-treatment on some physical and performance characteristics of briquettes from cornhusk (CH) and sawdust (SD) wastes. In this work, CH and SD wastes were processed raw and torrefied at 200 to 300 °C and were mixed in the ratios between 90/10 and 10/90 for briquette production using D-optimal crossed design. Cassava starch of 20 g to 100 g of the feedstock (w/w) was used as binder. The performance characteristics of CH/SD briquettes were evaluated using standard procedures while the generated data were processed using ANOVA, regression and pareto analysis. The thermal efficiency of 29.94% and water boiling time of 12 min were obtained for CH/SD briquette blend of ratio 10/90 torrefied at 300 °C. The maximum density and water resistance index of the torrefied briquettes at different blends respectively increased between 5.78–9.77% and 75.70–85.45% over those of the raw briquettes due to torrefaction and water preconditioning. Furthermore, the lowest value of burning rate was obtained for briquettes torrefied at 300 °C at 50/50 (CH/SD) ratio. ANOVA revealed that torrefaction and feedstock blending significantly influenced the characteristics of CH/SD briquette at p<0.05. This study showed the potential use of torrefied briquettes from cornhusk and sawdust wastes as alternative for coal and forest wood and a new source of energy for heating applications.\",\"PeriodicalId\":36747,\"journal\":{\"name\":\"Applied Environmental Research\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Environmental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35762/aer.2021.43.3.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Environmental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35762/aer.2021.43.3.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 2

摘要

通过能源回收进行农业废物管理是关键的选择之一,如果以可持续的方式进行,可以推动清洁能源生产行业,并在尼日利亚适当地取代煤炭的使用。因此,本研究的目的是研究废原料混合物和焙烧预处理对玉米壳(CH)和锯末(SD)废物型煤的一些物理和性能特性的协同效应。在本研究中,采用d -最优交叉设计,对CH和SD废弃物进行生料处理,并在200 ~ 300℃下固化,以90/10和10/90的比例混合,用于型煤生产。以原料(w/w)的20 ~ 100 g木薯淀粉为粘结剂。采用标准程序对CH/SD型煤的性能特征进行评价,生成的数据采用方差分析、回归分析和帕累托分析进行处理。对配比为10/90的CH/SD型煤进行300℃固化,其热效率为29.94%,沸水时间为12 min。不同掺量的碳化型煤的最大密度和抗水指数分别比原料型煤提高了5.78 ~ 9.77%和75.70 ~ 85.45%。在300℃、50/50 (CH/SD)比下固化的型煤燃烧速率最低。方差分析显示,焙烧和原料掺合对CH/SD型煤的性能有显著影响(p<0.05)。这项研究表明,从玉米壳和木屑废料中提炼的碳化型煤作为煤炭和森林木材的替代品,以及一种用于加热应用的新能源的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergetic Effects of Feedstock Mixture and Torrefaction on Some Briquette Characteristics of Cornhusk and Sawdust Wastes
Agricultural waste management through energy recovery is one of the critical options that could drive the clean energy production industry and properly replace the use of coal in Nigeria if done sustainably. The objective of this work therefore is to study the synergetic effect of waste feedstock mixture and torrefaction pre-treatment on some physical and performance characteristics of briquettes from cornhusk (CH) and sawdust (SD) wastes. In this work, CH and SD wastes were processed raw and torrefied at 200 to 300 °C and were mixed in the ratios between 90/10 and 10/90 for briquette production using D-optimal crossed design. Cassava starch of 20 g to 100 g of the feedstock (w/w) was used as binder. The performance characteristics of CH/SD briquettes were evaluated using standard procedures while the generated data were processed using ANOVA, regression and pareto analysis. The thermal efficiency of 29.94% and water boiling time of 12 min were obtained for CH/SD briquette blend of ratio 10/90 torrefied at 300 °C. The maximum density and water resistance index of the torrefied briquettes at different blends respectively increased between 5.78–9.77% and 75.70–85.45% over those of the raw briquettes due to torrefaction and water preconditioning. Furthermore, the lowest value of burning rate was obtained for briquettes torrefied at 300 °C at 50/50 (CH/SD) ratio. ANOVA revealed that torrefaction and feedstock blending significantly influenced the characteristics of CH/SD briquette at p<0.05. This study showed the potential use of torrefied briquettes from cornhusk and sawdust wastes as alternative for coal and forest wood and a new source of energy for heating applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Environmental Research
Applied Environmental Research Environmental Science-Environmental Science (all)
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信